22,758 research outputs found

    A Simplified Approach to Recovery Conditions for Low Rank Matrices

    Get PDF
    Recovering sparse vectors and low-rank matrices from noisy linear measurements has been the focus of much recent research. Various reconstruction algorithms have been studied, including â„“1\ell_1 and nuclear norm minimization as well as â„“p\ell_p minimization with p<1p<1. These algorithms are known to succeed if certain conditions on the measurement map are satisfied. Proofs of robust recovery for matrices have so far been much more involved than in the vector case. In this paper, we show how several robust classes of recovery conditions can be extended from vectors to matrices in a simple and transparent way, leading to the best known restricted isometry and nullspace conditions for matrix recovery. Our results rely on the ability to "vectorize" matrices through the use of a key singular value inequality.Comment: 6 pages, This is a modified version of a paper submitted to ISIT 2011; Proc. Intl. Symp. Info. Theory (ISIT), Aug 201

    Recovery of Low-Rank Matrices under Affine Constraints via a Smoothed Rank Function

    Full text link
    In this paper, the problem of matrix rank minimization under affine constraints is addressed. The state-of-the-art algorithms can recover matrices with a rank much less than what is sufficient for the uniqueness of the solution of this optimization problem. We propose an algorithm based on a smooth approximation of the rank function, which practically improves recovery limits on the rank of the solution. This approximation leads to a non-convex program; thus, to avoid getting trapped in local solutions, we use the following scheme. Initially, a rough approximation of the rank function subject to the affine constraints is optimized. As the algorithm proceeds, finer approximations of the rank are optimized and the solver is initialized with the solution of the previous approximation until reaching the desired accuracy. On the theoretical side, benefiting from the spherical section property, we will show that the sequence of the solutions of the approximating function converges to the minimum rank solution. On the experimental side, it will be shown that the proposed algorithm, termed SRF standing for Smoothed Rank Function, can recover matrices which are unique solutions of the rank minimization problem and yet not recoverable by nuclear norm minimization. Furthermore, it will be demonstrated that, in completing partially observed matrices, the accuracy of SRF is considerably and consistently better than some famous algorithms when the number of revealed entries is close to the minimum number of parameters that uniquely represent a low-rank matrix.Comment: Accepted in IEEE TSP on December 4th, 201

    High Dimensional Low Rank plus Sparse Matrix Decomposition

    Full text link
    This paper is concerned with the problem of low rank plus sparse matrix decomposition for big data. Conventional algorithms for matrix decomposition use the entire data to extract the low-rank and sparse components, and are based on optimization problems with complexity that scales with the dimension of the data, which limits their scalability. Furthermore, existing randomized approaches mostly rely on uniform random sampling, which is quite inefficient for many real world data matrices that exhibit additional structures (e.g. clustering). In this paper, a scalable subspace-pursuit approach that transforms the decomposition problem to a subspace learning problem is proposed. The decomposition is carried out using a small data sketch formed from sampled columns/rows. Even when the data is sampled uniformly at random, it is shown that the sufficient number of sampled columns/rows is roughly O(r\mu), where \mu is the coherency parameter and r the rank of the low rank component. In addition, adaptive sampling algorithms are proposed to address the problem of column/row sampling from structured data. We provide an analysis of the proposed method with adaptive sampling and show that adaptive sampling makes the required number of sampled columns/rows invariant to the distribution of the data. The proposed approach is amenable to online implementation and an online scheme is proposed.Comment: IEEE Transactions on Signal Processin

    Accurate and Efficient Private Release of Datacubes and Contingency Tables

    Full text link
    A central problem in releasing aggregate information about sensitive data is to do so accurately while providing a privacy guarantee on the output. Recent work focuses on the class of linear queries, which include basic counting queries, data cubes, and contingency tables. The goal is to maximize the utility of their output, while giving a rigorous privacy guarantee. Most results follow a common template: pick a "strategy" set of linear queries to apply to the data, then use the noisy answers to these queries to reconstruct the queries of interest. This entails either picking a strategy set that is hoped to be good for the queries, or performing a costly search over the space of all possible strategies. In this paper, we propose a new approach that balances accuracy and efficiency: we show how to improve the accuracy of a given query set by answering some strategy queries more accurately than others. This leads to an efficient optimal noise allocation for many popular strategies, including wavelets, hierarchies, Fourier coefficients and more. For the important case of marginal queries we show that this strictly improves on previous methods, both analytically and empirically. Our results also extend to ensuring that the returned query answers are consistent with an (unknown) data set at minimal extra cost in terms of time and noise
    • …
    corecore