2 research outputs found

    A simplified Cauchy-Kowalewskaya procedure for the implicit solution of generalized Riemann problems of hyperbolic balance laws

    Full text link
    The Cauchy-Kowalewskaya (CK) procedure is a key building block in the design of solvers for the Generalised Rieman Problem (GRP) based on Taylor series expansions in time. The CK procedure allows us to express time derivatives in terms of purely space derivatives. This is a very cumbersome procedure, which often requires the use of software manipulators. In this paper, a simplification of the CK procedure is proposed in the context of implicit Taylor series expansion for GRP, for hyperbolic balance laws in the framework of [Journal of Computational Physics 303 (2015) 146-172]. A recursive formula for the CK procedure, which is straightforwardly implemented in computational codes, is obtained. The proposed GRP solver is used in the context of the ADER approach and several one-dimensional problems are solved to demonstrate the applicability and efficiency of the present scheme. An enhancement in terms of efficiency, is obtained. Furthermore, the expected theoretical orders of accuracy are achieved, conciliating accuracy and stability.Comment: 32 pages, 3 figure

    A universal centred high-order method based on implicit Taylor series expansion with fast second order evolution of spatial derivatives

    Full text link
    In this paper, a centred universal high-order finite volume method for solving hyperbolic balance laws is presented. The scheme belongs to the family of ADER methods where the Generalized Riemann Problems (GRP) is a building block. The solution to these problems is carried through an implicit Taylor series expansion, which allows the scheme to works very well for stiff source terms. A von Neumann stability analysis is carried out to investigate the range of CFL values for which stability and accuracy are balanced. The scheme implements a centred, low dissipation approach for dealing with the advective part of the system which profits from small CFL values. Numerical tests demonstrate that the present scheme can solve, efficiently, hyperbolic balance laws in both conservative and non-conservative form as well. An empirical convergence rate assessment shows that the expected theoretical orders of accuracy are achieved up to the fifth order
    corecore