1,094 research outputs found

    Tabu Search Heuristics for the Crane Sequencing Problem

    Get PDF
    Determining the sequence of relocating items (or resources) moved by a crane from existing positions to newly assigned locations during a multiperiod planning horizon is a complex combinatorial optimisation problem, which exists in power plants, shipyards, and warehouses. Therefore, it is essential to develop a good crane route technique to ensure efficient utilisation of the crane as well as to minimize the cost of operating the crane. This problem was defined as the Crane Sequencing Problem (CSP). In this paper, three construction and three improvement algorithms are presented for the CSP. The first improvement heuristic is a simple Tabu Search (TS) heuristic. The second is a probabilistic TS heuristic, and the third adds diversification and intensification strategies to the first. The computational experiments show that the proposed TS heuristics produce high-quality solutions in reasonable computation time

    Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or ride through a distribution warehouse in order to collect items requested by (internal or external) customers. In order to perform these operations efficiently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours necessary to collect all items is minimized. For the solution of this problem the authors suggest two approaches based on the tabu search principle. The first one is a straightforward classic Tabu Search algorithm (TS), the second one is the Attribute-Based Hill Climber (ABHC). In a series of extensive numerical experiments, the newly developed approaches are benchmarked against different solution methods from literature. It is demonstrated that the proposed methods are superior to existing methods and provide solutions which may allow for operating distribution warehouses significantly more efficiently

    Dynamic Batching for Order Picking in Warehouses

    Get PDF
    Dynamic batch picking is characterized by combining product demand from multiple customer orders into one pick tour where new orders are continuously received. Using modern order-picking aids, updated picking instructions can be included in the current pick tours which allows pickers to be re-routed to pick for new orders even when they already started a pick tour. We develop a mathematical model for dynamic batch picking that minimizes the order throughput time of incoming customer orders. In case of new order arrivals, we can quickly re-optimize the model and determine new updated pick tours. This allows for short order throughput times and ensures that warehouse companies can set their order cut-off times as late as possible while still guaranteeing that orders can be delivered next day or in some cases even the same day

    Solution Methods for the \u3cem\u3ep\u3c/em\u3e-Median Problem: An Annotated Bibliography

    Get PDF
    The p-median problem is a graph theory problem that was originally designed for, and has been extensively applied to, facility location. In this bibliography, we summarize the literature on solution methods for the uncapacitated and capacitated p-median problem on a graph or network

    Designing new models and algorithms to improve order picking operations

    Get PDF
    Order picking has been identified as a crucial factor for the competitiveness of a supply chain because inadequate order picking performance causes customer dissatisfaction and high costs. This dissertation aims at designing new models and algorithms to improve order picking operations and to support managerial decisions on facing current challenges in order picking. First, we study the standard order batching problem (OBP) to optimize the batching of customer orders with the objective of minimizing the total length of order picking tours. We present a mathematical model formulation of the problem and develop a hybrid solution approach of an adaptive large neighborhood search and a tabu search method. In numerical studies, we conduct an extensive comparison of our method to all previously published OBP methods that used standard benchmark sets to investigate their performance. Our hybrid outperforms all comparison methods with respect to average solution quality and runtime. Compared to the state-of-the-art, the hybrid shows the clearest advantages on the larger instances of the existing benchmark sets, which assume a larger number of customer orders and larger capacities of the picking device. Finally, our method is able to solve newly generated large-scale instances with up to 600 customer orders and six items per customer order with reasonable runtimes and convincing scaling behavior and robustness. Next, we address a problem based on a practical case, which is inspired by a warehouse of a German manufacturer of household products. In this warehouse, heavy items are not allowed to be placed on top of light items during picking to prevent damage to the light items. Currently, the case company determines the sequence for retrieving the items from their storage locations by applying a simple S-shape strategy that neglects this precedence constraint. As a result, order pickers place the collected items next to each other in plastic boxes and sort the items respecting the precedence constraint at the end of the order picking process. To avoid this sorting, we propose a picker routing strategy that incorporates the precedence constraint by picking heavy items before light items, and we develop an exact solution method to evaluate the strategy. We assess the performance of our strategy on a dataset provided to us by the manufacturer. We compare our strategy to the strategy used in the warehouse of the case company, and to an exact picker routing approach that does not consider the given precedence constraint. The results clearly demonstrate the convincing performance of our strategy even if we compare our strategy to the exact solution method that neglects the precedence constraint. Last, we investigate a new order picking problem, in which human order pickers of the traditional picker-to-parts setup are supported by automated guided vehicles (AGVs). We introduce two mathematical model formulations of the problem, and we develop a heuristic to solve the NP-hard problem. In numerical studies, we assess the solution quality of the heuristic in comparison to optimal solutions. The results demonstrate the ability of the heuristic in finding high-quality solutions within a negligible computation time. We conduct several computational experiments to investigate the effect of different numbers of AGVs and different traveling and walking speed ratios between AGVs and order pickers on the average total tardiness. The results of our experiments indicate that by adding (or removing) AGVs or by increasing (or decreasing) the AGV speed to adapt to different workloads, a large number of customer orders can be completed until the respective due date
    • …
    corecore