8,508 research outputs found

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    Multipath Multiplexing for Capacity Enhancement in SIMO Wireless Systems

    Full text link
    This paper proposes a novel and simple orthogonal faster than Nyquist (OFTN) data transmission and detection approach for a single input multiple output (SIMO) system. It is assumed that the signal having a bandwidth BB is transmitted through a wireless channel with LL multipath components. Under this assumption, the current paper provides a novel and simple OFTN transmission and symbol-by-symbol detection approach that exploits the multiplexing gain obtained by the multipath characteristic of wideband wireless channels. It is shown that the proposed design can achieve a higher transmission rate than the existing one (i.e., orthogonal frequency division multiplexing (OFDM)). Furthermore, the achievable rate gap between the proposed approach and that of the OFDM increases as the number of receiver antennas increases for a fixed value of LL. This implies that the performance gain of the proposed approach can be very significant for a large-scale multi-antenna wireless system. The superiority of the proposed approach is shown theoretically and confirmed via numerical simulations. {Specifically, we have found {upper-bound average} rates of 15 bps/Hz and 28 bps/Hz with the OFDM and proposed approaches, respectively, in a Rayleigh fading channel with 32 receive antennas and signal to noise ratio (SNR) of 15.3 dB. The extension of the proposed approach for different system setups and associated research problems is also discussed.Comment: IEEE Transactions on Wireless Communication

    A new approach to service provisioning in ATM networks

    Get PDF
    The authors formulate and solve a problem of allocating resources among competing services differentiated by user traffic characteristics and maximum end-to-end delay. The solution leads to an alternative approach to service provisioning in an ATM network, in which the network offers directly for rent its bandwidth and buffers and users purchase freely resources to meet their desired quality. Users make their decisions based on their own traffic parameters and delay requirements and the network sets prices for those resources. The procedure is iterative in that the network periodically adjusts prices based on monitored user demand, and is decentralized in that only local information is needed for individual users to determine resource requests. The authors derive the network's adjustment scheme and the users' decision rule and establish their optimality. Since the approach does not require the network to know user traffic and delay parameters, it does not require traffic policing on the part of the network

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Congestion control in resilient packet ring networks

    Get PDF
    The Resilient Packet Ring (RPR) is a new metro technology; RPR shares SONET\u27s ability in providing fast recovery from link and node failures as well as inherits the cost and simplicity of Ethernet. RPR, like SONET/SDH, is a ring based architecture consisting of two optical rotating rings (uni-directional). In RPR, packets are removed from the ring at the destination so that different segments of the ring can be used at the same time for different flows; as a result, the spatial reuse feature is achieved. Enabling the spatial reuse feature introduces the challenge of guaranteeing fairness among the nodes sharing the same link. The RPR fairness algorithm is comparatively simple, but it poses some critical limitations. One of the major problems is that the amount of bandwidth allocated by the algorithm oscillates severely under unbalanced traffic scenarios. These oscillations are a barrier to achieving spatial reuse and high bandwidth utilization. Moreover, the current RPR standard uses a single FIFO for each class at the ingress point, thus resulting in the head of line blocking problem. On the other hand, RPR uses the shortest path to route the traffic in the dual ring which is inefficient and unfair. In this dissertation, the performance of the existing fairness algorithms and their limitations was investigated. Two bandwidth allocation algorithms were proposed to address the fairness issue. Both algorithms were demonstrated analytically and through simulations were able to achieve fairness and maximize the ring utilization. The Distributed Bandwidth Allocation (DBA) and the Adaptive Bandwidth Allocation (ABA) do not need to maintain information about each node. Instead, they use the local information which makes them scalable for a ring with any number of nodes. The Simple Scheduling Algorithm (SSA) was proposed to avoid the head of line blocking and to maximize the ring utilization at a very low complexity. The SSA algorithm was shown analytically and through simulations to be optimal where the flows achieve their max-mm fair rates at a very low computational complexity. Also, the weighted routing algorithm was proposed to maximize the ring utilization by enabling the RPR nodes to transmit in both rings in a weighted manner. The routing algorithm was demonstrated analytically and through simulations was able to maximize the ring utilization

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin
    corecore