7 research outputs found

    Numerical solution of the inverse Gardner equation

    Get PDF
    In this paper, the numerical solution of the inverse Gardner equation will be considered. The Haar wavelet collocation method (HWCM) will be used to determine the unknown boundary condition which is estimated from an over-specified condition at a boundary. In this regard, we apply the HWCM for discretizing the space derivatives and then use a quasilinearization technique to linearize the nonlinear term in the equations. It is proved that the proposed method has the order of convergence O(∆x). The efficiency and robustness of the proposed approach for solving the inverse Gardner equation are demonstrated by one numerical example.Publisher's Versio

    System Engineering Applied to Fuenmayor Karst Aquifer (San Julián de Banzo, Huesca) and Collins Glacier (King George Island, Antarctica)

    Get PDF
    La ingeniería de sistemas, definida generalmente como arte y ciencia de crear soluciones integrales a problemas complejos, se aplica en el presente documento a dos sistemas naturales, a saber, un sistema acuífero kárstico y un sistema glaciar, desde una perspectiva hidrológica. Las técnicas de identificación, desarrolladas típicamente en ingeniería para representar sistemas artificiales por medio de modelos lineales y no lineales, pueden aplicarse en el estudio de los sistemas naturales donde se producen fenómenos de acoplamiento entre el clima y la hidrosfera. Los métodos evolucionan para afrontar nuevos campos de identificación donde se requieren estrategias para encontrar el modelo idóneo adaptado a las peculiaridades del sistema. En este sentido, se han considerado especialmente las herramientas basadas en la transformada wavelet utilizadas en la preparación de series temporales, suavizado de señales, análisis espectral, correlación cruzada y predicción, entre otros. Bajo este enfoque, una aplicación a mencionar entre las tratadas en esta tesis, es la determinación analítica del núcleo efectivo estacional (SEC) a través del estudio de la coherencia wavelet entre temperatura del aire y la descarga del glaciar, que establece un conjunto de períodos de muestreo aceptablemente coherentes, a partir del cual se crearán los modelos del sistema glacial. El estudio está dirigido específicamente a estimar la influencia de la precipitación sobre la descarga del acuífero kárstico de Fuenmayor, en San Julián de Banzo, Huesca, España. De la misma manera, se ocupa de las consecuencias de la temperatura del aire en la fusión del hielo glaciar, que se manifiesta en la corriente de drenaje del glaciar Collins, isla King George, Antártida. En el proceso de identificación paramétrica y no paramétrica se buscan los modelos que mejor representen la dinámica interna del sistema. Eso conduce a pruebas iterativas, donde se van creando modelos que se verifican sistemáticamente con los datos reales del muestreo, de acuerdo a un criterio de eficiencia dado. La solución mejor valorada según los resultados obtenidos en los casos tratados apuntan a estructuras de modelos en bloques. Esta tesis significa una exposición formal de la metodología de identificación de sistemas propios de la ingeniería en el contexto de los sistemas naturales, que mejoran los resultados obtenidos en muchos casos de la hidrología kárstica que comúnmente usaban métodos ad hoc ocasionales de carácter estadístico; así mismo, los enfoques propuestos en los casos de glaciología con el análisis wavelet y los modelos orientados a datos raramente considerados en la literatura, revelan información esencial ante la imposibilidad de precisar la totalidad de la física que rige el sistema. Notables resultados se derivan en la caracterización de la respuesta del manantial de Fuenmayor y su correlación con la precipitación, desde la perspectiva de un sistema lineal, que se complementa con los métodos de identificación basados en técnicas no lineales. Así mismo, la implementación del modelo para el glaciar Collins, obtenido también mediante métodos de identificación de caja negra, puede revelar una inestabilidad de los límites de los periodos activos de la descarga, y consecuentemente la variabilidad en la tendencia actual en el cambio climático global

    Nonlinear system identification using wavelet based SDP models

    Get PDF
    System identification has played an increasingly dominant role in a wide range of engineering applications. While linear system's theory is mature, nonlinear system identification remains an open research area in recent years. This thesis develops a new, efficient and systematic approach to the identification of nonlinear dynamic systems using wavelet based State Dependent Parameter (SDP) models, from structure determination to parameter estimation. In this approach, the system's nonlinearities are analysed and effectively represented by a SDP model structure in the form of wavelets. This provides a computationally efficient tool to open up the `black-box', offering valuable insights into the system's dynamics. In this thesis, 1-dimensional (1-D) approach is first developed based on a conventional SDP model structure which relies on a single state variable dependency. It is then extended into a multi-dimensional approach in order to solve the identification problem of systems with significant multi-variable dependence nonlinear dynamics. Here, parametrically efficient nonlinear model is obtained by the application of an effective model structure selection algorithm based on the Predicted Residual Sums of Squares (PRESS) criterion in conjunction with Orthogonal Decomposition (OD) to avoid any ill-conditioning problems associated with the parameter estimation. This thesis also investigates the aspects of noise, stability and other engineering application of the proposed approaches. More specifically, this includes: (1) nonlinear identification in the presence of noise, (2) development of bounded characteristics of the estimated models and (3) application studies where the developed approaches have been used in various engineering applications. Particularly, the modelling and forecast of daily peak power demand in the state of Victoria, Australia have been effectively studied using the proposed approaches. This strongly motivates a great deal of potential future research to be carried out in the area of power system modelling

    A simple scheme for semi-recursive identification of Hammerstein system nonlinearity by Haar wavelets

    No full text
    A simple semi-recursive routine for nonlinearity recovery in Hammerstein systems is proposed. The identification scheme is based on the Haar wavelet kernel and possesses a simple and compact form. The convergence of the algorithm is established and the asymptotic rate of convergence (independent of the input density smoothness) is shown for piecewise-Lipschitz nonlinearities. The numerical stability of the algorithm is verified. Simulation experiments for a small and moderate number of input-output data are presented and discussed to illustrate the applicability of the routine
    corecore