25,337 research outputs found

    Learning optimization models in the presence of unknown relations

    Full text link
    In a sequential auction with multiple bidding agents, it is highly challenging to determine the ordering of the items to sell in order to maximize the revenue due to the fact that the autonomy and private information of the agents heavily influence the outcome of the auction. The main contribution of this paper is two-fold. First, we demonstrate how to apply machine learning techniques to solve the optimal ordering problem in sequential auctions. We learn regression models from historical auctions, which are subsequently used to predict the expected value of orderings for new auctions. Given the learned models, we propose two types of optimization methods: a black-box best-first search approach, and a novel white-box approach that maps learned models to integer linear programs (ILP) which can then be solved by any ILP-solver. Although the studied auction design problem is hard, our proposed optimization methods obtain good orderings with high revenues. Our second main contribution is the insight that the internal structure of regression models can be efficiently evaluated inside an ILP solver for optimization purposes. To this end, we provide efficient encodings of regression trees and linear regression models as ILP constraints. This new way of using learned models for optimization is promising. As the experimental results show, it significantly outperforms the black-box best-first search in nearly all settings.Comment: 37 pages. Working pape

    An intelligent assistant for exploratory data analysis

    Get PDF
    In this paper we present an account of the main features of SNOUT, an intelligent assistant for exploratory data analysis (EDA) of social science survey data that incorporates a range of data mining techniques. EDA has much in common with existing data mining techniques: its main objective is to help an investigator reach an understanding of the important relationships ina data set rather than simply develop predictive models for selectd variables. Brief descriptions of a number of novel techniques developed for use in SNOUT are presented. These include heuristic variable level inference and classification, automatic category formation, the use of similarity trees to identify groups of related variables, interactive decision tree construction and model selection using a genetic algorithm

    Simple trees in complex forests: Growing Take The Best by Approximate Bayesian Computation

    Get PDF
    How can heuristic strategies emerge from smaller building blocks? We propose Approximate Bayesian Computation as a computational solution to this problem. As a first proof of concept, we demonstrate how a heuristic decision strategy such as Take The Best (TTB) can be learned from smaller, probabilistically updated building blocks. Based on a self-reinforcing sampling scheme, different building blocks are combined and, over time, tree-like non-compensatory heuristics emerge. This new algorithm, coined Approximately Bayesian Computed Take The Best (ABC-TTB), is able to recover a data set that was generated by TTB, leads to sensible inferences about cue importance and cue directions, can outperform traditional TTB, and allows to trade-off performance and computational effort explicitly

    On the automated extraction of regression knowledge from databases

    Get PDF
    The advent of inexpensive, powerful computing systems, together with the increasing amount of available data, conforms one of the greatest challenges for next-century information science. Since it is apparent that much future analysis will be done automatically, a good deal of attention has been paid recently to the implementation of ideas and/or the adaptation of systems originally developed in machine learning and other computer science areas. This interest seems to stem from both the suspicion that traditional techniques are not well-suited for large-scale automation and the success of new algorithmic concepts in difficult optimization problems. In this paper, I discuss a number of issues concerning the automated extraction of regression knowledge from databases. By regression knowledge is meant quantitative knowledge about the relationship between a vector of predictors or independent variables (x) and a scalar response or dependent variable (y). A number of difficulties found in some well-known tools are pointed out, and a flexible framework avoiding many such difficulties is described and advocated. Basic features of a new tool pursuing this direction are reviewed
    corecore