13,529 research outputs found

    Automatic correction of Ma and Sonka's thinning algorithm using P-simple points

    Get PDF
    International audienceMa and Sonka proposed a fully parallel 3D thinning algorithm which does not always preserve topology. We propose an algorithm based on P-simple points which automatically corrects Ma and Sonka's Algorithm. As far as we know, our algorithm is the only fully parallel curve thinning algorithm which preserves topology

    An automatic correction of Ma's thinning algorithm based on P -simple points

    Get PDF
    International audienceThe notion of P -simple points has been introduced by Bertrand to conceive parallel thinning algorithms. In 'A 3D fully parallel thinning algorithm for generating medial faces', Ma has proposed an algorithm for which there exists objects whose topology is not preserved. In this paper, we propose a new application of P -simple points: to automatically correct Ma's algorithm

    Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties

    Full text link
    The shape of irregular particles has significant influence on micro- and macro-scopic behavior of granular systems. This paper presents a combined 3D thinning and greedy set-covering algorithm to approximate realistic particles with a clump of overlapping spheres for discrete element method (DEM) simulations. First, the particle medial surface (or surface skeleton), from which all candidate (maximal inscribed) spheres can be generated, is computed by the topological 3D thinning. Then, the clump generation procedure is converted into a greedy set-covering (SCP) problem. To correct the mass distribution due to highly overlapped spheres inside the clump, linear programming (LP) is used to adjust the density of each component sphere, such that the aggregate properties mass, center of mass and inertia tensor are identical or close enough to the prototypical particle. In order to find the optimal approximation accuracy (volume coverage: ratio of clump's volume to the original particle's volume), particle flow of 3 different shapes in a rotating drum are conducted. It was observed that the dynamic angle of repose starts to converge for all particle shapes at 85% volume coverage (spheres per clump < 30), which implies the possible optimal resolution to capture the mechanical behavior of the system.Comment: 34 pages, 13 figure
    corecore