2,287 research outputs found

    A Simple Method for the Deployment of Wireless Sensors to Ensure Full Coverage of an Irregular Area with Obstacles

    Get PDF
    International audienceIn this paper, we focus on the deployment of wireless sensor nodes in an arbitrary realistic area with an irregular shape, and with the presence of obstacles that may be opaque. Moreover, we propose a simple projection-based method that tends to minimize the number of sensor nodes needed to fully cover such an area. This method starts with the opti-mal uniform deployment based on the triangular tessellation encompassing the whole area. Then, it projects some exter-nal sensor nodes on the border to ensure full coverage and connectivity. We show that this method outperforms the contour-based one using various types of irregular areas

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    Deployment, Coverage And Network Optimization In Wireless Video Sensor Networks For 3D Indoor Monitoring

    Get PDF
    As a result of extensive research over the past decade or so, wireless sensor networks (wsns) have evolved into a well established technology for industry, environmental and medical applications. However, traditional wsns employ such sensors as thermal or photo light resistors that are often modeled with simple omni-directional sensing ranges, which focus only on scalar data within the sensing environment. In contrast, the sensing range of a wireless video sensor is directional and capable of providing more detailed video information about the sensing field. Additionally, with the introduction of modern features in non-fixed focus cameras such as the pan, tilt and zoom (ptz), the sensing range of a video sensor can be further regarded as a fan-shape in 2d and pyramid-shape in 3d. Such uniqueness attributed to wireless video sensors and the challenges associated with deployment restrictions of indoor monitoring make the traditional sensor coverage, deployment and networked solutions in 2d sensing model environments for wsns ineffective and inapplicable in solving the wireless video sensor network (wvsn) issues for 3d indoor space, thus calling for novel solutions. In this dissertation, we propose optimization techniques and develop solutions that will address the coverage, deployment and network issues associated within wireless video sensor networks for a 3d indoor environment. We first model the general problem in a continuous 3d space to minimize the total number of required video sensors to monitor a given 3d indoor region. We then convert it into a discrete version problem by incorporating 3d grids, which can achieve arbitrary approximation precision by adjusting the grid granularity. Due in part to the uniqueness of the visual sensor directional sensing range, we propose to exploit the directional feature to determine the optimal angular-coverage of each deployed visual sensor. Thus, we propose to deploy the visual sensors from divergent directional angles and further extend k-coverage to ``k-angular-coverage\u27\u27, while ensuring connectivity within the network. We then propose a series of mechanisms to handle obstacles in the 3d environment. We develop efficient greedy heuristic solutions that integrate all these aforementioned considerations one by one and can yield high quality results. Based on this, we also propose enhanced depth first search (dfs) algorithms that can not only further improve the solution quality, but also return optimal results if given enough time. Our extensive simulations demonstrate the superiority of both our greedy heuristic and enhanced dfs solutions. Finally, this dissertation discusses some future research directions such as in-network traffic routing and scheduling issues

    Enabling Cyber Physical Systems with Wireless Sensor Networking Technologies

    Get PDF
    [[abstract]]Over the last few years, we have witnessed a growing interest in Cyber Physical Systems (CPSs) that rely on a strong synergy between computational and physical components. CPSs are expected to have a tremendous impact on many critical sectors (such as energy, manufacturing, healthcare, transportation, aerospace, etc) of the economy. CPSs have the ability to transform the way human-to-human, human-toobject, and object-to-object interactions take place in the physical and virtual worlds. The increasing pervasiveness of Wireless Sensor Networking (WSN) technologies in many applications make them an important component of emerging CPS designs. We present some of the most important design requirements of CPS architectures. We discuss key sensor network characteristics that can be leveraged in CPS designs. In addition, we also review a few well-known CPS application domains that depend on WSNs in their design architectures and implementations. Finally, we present some of the challenges that still need to be addressed to enable seamless integration of WSN with CPS designs.[[incitationindex]]SCI[[booktype]]紙

    Target Tracking in Confined Environments with Uncertain Sensor Positions

    Get PDF
    To ensure safety in confined environments such as mines or subway tunnels, a (wireless) sensor network can be deployed to monitor various environmental conditions. One of its most important applications is to track personnel, mobile equipment and vehicles. However, the state-of-the-art algorithms assume that the positions of the sensors are perfectly known, which is not necessarily true due to imprecise placement and/or dropping of sensors. Therefore, we propose an automatic approach for simultaneous refinement of sensors' positions and target tracking. We divide the considered area in a finite number of cells, define dynamic and measurement models, and apply a discrete variant of belief propagation which can efficiently solve this high-dimensional problem, and handle all non-Gaussian uncertainties expected in this kind of environments. Finally, we use ray-tracing simulation to generate an artificial mine-like environment and generate synthetic measurement data. According to our extensive simulation study, the proposed approach performs significantly better than standard Bayesian target tracking and localization algorithms, and provides robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201

    Improvised Greedy Algorithm of Sensors Scheduling for Target Coverage in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have many fields of application, including industrial, environmental, military, health and home domains. Monitoring a given zone is one of the main goals of this technology. This consists in deploying sensor nodes in order to detect any event occurring in the zone of interest considered and report this event to the sink. The monitoring task can vary depending on the application domain concerned. In the industrial domain, the fast and easy deployment of wireless sensor nodes allows a better monitoring of the area of interest in temporary work sites. This deployment must be able to cope with obstacles and be energy efficient in order to maximize the network lifetime. If the deployment is made after a disaster, it will operate in an unfriendly environment that is discovered dynamically. The lifetime maximization in sensors network with target coverage can be explained by these statements: How to find the maximum number of sets from all sensors such that each set can cover all the target at any particular instant of time, and then schedule those sets to be active and sleep, so that this arrangement can maximize the lifetime of the network. In this research we have discussed a greedy algorithm that produce maximum number of disjoint sets of the sensors, such that each sensor set is a set-cover

    Modelling and planning reliable wireless sensor networks based on multi-objective optimization genetic algorithm with changeable length

    Get PDF
    Wireless sensor networks (WSN) have shown their potentials in various applications, which bring a lot of benefits to users from different working areas. However, due to the diversity of the deployed environments and resource constraints, it is difficult to predict the performance of a topology. Besides the connectivity, coverage, cost, network longevity and service quality should all be considered during the planning procedure. Therefore, efficiently planning a reliable WSN is a challenging task, which requires designers coping with comprehensive and interdisciplinary knowledge. A WSN planning method is proposed in this work to tackle the above mentioned challenges and efficiently deploying reliable WSNs. First of all, the above mentioned metrics are modeled more comprehensively and practically compared with other works. Especially 3D ray tracing method is used to model the radio link and sensing signal, which are sensitive to the obstruction of obstacles; network routing is constructed by using AODV protocol; the network longevity, packet delay and packet drop rate are obtained via simulating practical events in WSNet simulator, which to the best of our knowledge, is the first time that network simulator is involved in a planning algorithm. Moreover, a multi-objective optimization algorithm is developed to cater for the characteristics of WSNs. Network size is changeable during evolution, meanwhile the crossovers and mutations are limited by certain constraints to eliminate invalid modifications and improve the computation efficiency. The capability of providing multiple optimized solutions simultaneously allows users making their own decisions, and the results are more comprehensive optimized compared with other state-of-the-art algorithms. Practical WSN deployments are also realized for both indoor and outdoor environments and the measurements coincident well with the generated optimized topologies, which prove the efficiency and reliability of the proposed algorithm
    corecore