158 research outputs found

    Prediction and Control of Asymmetric Vortical Flows Around Slender Bodies Using Navier-Stokes Equations

    Get PDF
    Steady and unsteady vortex-dominated flows around slender bodies at high angles of attack are solved using the unsteady, compressible Navier-Stokes equations. An implicit upwind, finite-volume scheme is used for the numerical computations. For supersonic flows past pointed bodies, the locally-conical flow assumption has been used. Asymmetric flows past five-degree semiapex cones using the thin-layer Navier-Stokes equations at different angles of attack, freestream Mach numbers, Reynolds numbers, grid fineness, computational domain size, sources of disturbances and cross-section shapes have been studied. The onset of flow asymmetry occurs when the relative incidence of pointed forebodies exceeds certain critical values. At these critical values of relative incidence, asymmetric flow develops irrespective of the sources of disturbances. The results of unsteady asymmetric flows show that periodic vortex shedding exists at larger angles of attack and it is independent of the numerical schemes used. Passive control of steady and unsteady asymmetric vortical flows around cones using vertical fins and side-strakes have also been studied. Side-strikes control of flow asymmetry over a wide range of angles of attack requires shorter strake heights than those of the vertical-fin control and produces higher lift for the same cone. Three-dimensional, incompressible flows past a prolate spheroid and a tangent-ogive cylinder are solved and compared with experimental data for validation of the numerical scheme. Three-dimensional supersonic asymmetric flows around a five degree semiapex angle circular cone at different angles of attack and Reynolds numbers are presented. Flow asymmetry has been obtained using short-duration disturbances. The flow asymmetry becomes stronger as the Reynolds number and angle of attack are increased. The asymmetric solutions show spatial vortex shedding which is qualitatively similar to the temporal vortex shedding of the unsteady locally-conical flow

    Discontinuous Galerkin discretised level set methods with applications to topology optimisation

    Get PDF
    This thesis presents research concerning level set methods discretised using discontinuous Galerkin (DG) methods. Whilst the context of this work is level set based topology optimisation, the main outcomes of the research concern advancements which are agnostic of application. The first of these outcomes are the development of two novel DG discretised PDE based level set reinitialisation techniques, the so called Elliptic and Parabolic reinitialisation methods, which are shown through experiment to be robust and satisfy theoretical optimal rates of convergence. A novel Runge-Kutta DG discretisation of a simplified level set evolution equation is presented which is shown through experiment to be high-order accurate for smooth problems (optimal error estimates do not yet exist in the literature based on the knowledge of the author). Narrow band level set methods are investigated, and a novel method for extending the level set function outside of the narrow band, based on the proposed Elliptic Reinitialisation method, is presented. Finally, a novel hp-adaptive scheme is developed for the DG discretised level set method driven by the degree with which the level set function can locally satisfy the Eikonal equation defining the level set reinitialisation problem. These component parts are thus combined to form a proposed DG discretised level set methodology, the efficacy of which is evaluated through the solution of numerous example problems. The thesis is concluded with a brief exploration of the proposed method for a minimum compliance design problem

    On Discontinuous Galerkin Methods for Singularly Perturbed and Incompressible Miscible Displacement Problems

    Get PDF
    This thesis is concerned with the numerical approximation of problems of fluid flow, in particular the stationary advection diffusion reaction equations and the time dependent, coupled equations of incompressible miscible displacement in a porous medium. We begin by introducing the continuous discontinuous Galerkin method for the singularly perturbed advection diffusion reaction problem. This is a method which coincides with the continuous Galerkin method away from internal and boundary layers and with a discontinuous Galerkin method in the vicinity of layers. We prove that this consistent method is stable in the streamline diffusion norm if the convection field flows non-characteristically from the region of the continuous Galerkin to the region of the discontinuous Galerkin method. We then turn our attention to the equations of incompressible miscible displacement for the concentration, pressure and velocity of one fluid in a porous medium being displaced by another. We show a reliable a posteriori error estimator for the time dependent, coupled equations in the case where the solution has sufficient regularity and the velocity is bounded. We remark that these conditions may not be attained in physically realistic geometries. We therefore present an abstract approach to the stationary problem of miscible displacement and investigate an a posteriori error estimator using weighted spaces that relies on lower regularity requirements for the true solution. We then return to the continuous discontinuous Galerkin method. We prove in an abstract setting that standard (continuous) Galerkin finite element approximations are the limit of interior penalty discontinuous Galerkin approximations as the penalty parameter tends to infinity. We then show that by varying the penalization parameter on only a subset of the domain we reach the continuous discontinuous method in the limit. We present numerical experiments illustrating this approach both for equations of non-negative characteristic form (closely related to advection diffusion reaction equations) and to the problem of incompressible miscible displacement. We show that we may practically determine appropriate discontinuous and continuous regions, resulting in a significant reduction of the number of degrees of freedom required to approximate a solution, by using the properties of the discontinuous Galerkin approximation to the advection diffusion reaction equation. We finally present novel code for implementing the continuous discontinuous Galerkin method in C++

    Enhanced SPH modeling of free-surface ļ¬‚ows with large deformations

    Get PDF
    The subject of the present thesis is the development of a numerical solver to study the violent interaction of marine flows with rigid structures. Among the many numerical models available, the Smoothed Particle Hydrodynamics (SPH) has been chosen as it proved appropriate in dealing with violent free-surface flows. Due to its Lagrangian and meshless character it can naturally handle breaking waves and fragmentation that generally are not easily treated by standard methods. On the other hand, some consolidated features of mesh-based methods, such as the solid boundary treatment, still remain unsolved issues in the SPH context. In the present work a great part of the research activity has been devoted to tackle some of the bottlenecks of the method. Firstly, an enhanced SPH model, called delta-SPH, has been proposed. In this model, a proper numerical diffusive term has been added in the continuity equation in order to remove the spurious numerical noise in the pressure field which typically affects the weakly-compressible SPH models. Then, particular attention has been paid to the development of suitable techniques for the enforcement of the boundary conditions. As for the free-surface, a specific algorithm has been designed to detect free-surface particles and to define a related level-set function with two main targets: to allow the imposition of peculiar conditions on the free-surface and to analyse and visualize more easily the simulation outcome (especially in 3D cases). Concerning the solid boundary treatment, much effort has been spent to devise new techniques for handling generic body geometries with an adequate accuracy in both 2D and 3D problems. Two different techniques have been described: in the first one the standard ghost fluid method has been extended in order to treat complex solid geometries. Both free-slip and no-slip boundary conditions have been implemented, the latter being a quite complex matter in the SPH context. The proposed boundary treatment proved to be robust and accurate in evaluating local and global loads, though it is not easy to extend to generic 3D surfaces. The second technique has been adopted for these cases. Such a technique has been developed in the context of Riemann-SPH methods and in the present work is reformulated in the context of the standard SPH scheme. The method proved to be robust in treating complex 3D solid surfaces though less accurate than the former. Finally, an algorithm to correctly initialize the SPH simulation in the case of generic geometries has been described. It forces a resettlement of the fluid particles to achieve a regular and uniform spacing even in complex configurations. This pre-processing procedure avoids the generation of spurious currents due to local defects in the particle distribution at the beginning of the simulation. The delta-SPH model has been validated against several problems concerning fluid-structure interactions. Firstly, the capability of the solver in dealing with water impacts has been tested by simulating a jet impinging on a flat plate and a dam-break flow against a vertical wall. In this cases, the accuracy in the prediction of local loads and of the pressure field have been the main focus. Then, the viscous flow around a cylinder, in both steady and unsteady conditions, has been simulated comparing the results with reference solutions. Finally, the generation and propagation of 2D gravity waves has been simulated. Several regimes of propagation have been tested and the results compared against a potential flow solver. The developed numerical solver has been applied to several cases of free-surface flows striking rigid structures and to the problem of the generation and evolution of ship generated waves. In the former case, the robustness of the solver has been challenged by simulating 2D and 3D water impacts against complex solid surfaces. The numerical outcome have been compared with analytical solutions, experimental data and other numerical results and the limits of the model have been discussed. As for the ship generated waves, the problem has been firstly studied within the 2D+t approximation, focusing on the occurrence and features of the breaking bow waves. Then, a dedicated 3D SPH parallel solver has been developed to tackle the simulation of the entire ship in constant forward motion. This simulation is quite demanding in terms of complexities of the boundary geometry and computational resources required. The wave pattern obtained has been compared against experimental data and results from other numerical methods, showing in both the cases a fair and promising agreement

    A reduced-basis method for input-output uncertainty propagation in stochastic PDEs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 123-132).Recently there has been a growing interest in quantifying the effects of random inputs in the solution of partial differential equations that arise in a number of areas, including fluid mechanics, elasticity, and wave theory to describe phenomena such as turbulence, random vibrations, flow through porous media, and wave propagation through random media. Monte-Carlo based sampling methods, generalized polynomial chaos and stochastic collocation methods are some of the popular approaches that have been used in the analysis of such problems. This work proposes a non-intrusive reduced-basis method for the rapid and reliable evaluation of the statistics of linear functionals of stochastic PDEs. Our approach is based on constructing a reduced-basis model for the quantity of interest that enables to solve the full problem very efficiently. In particular, we apply a reduced-basis technique to the Hybridizable Discontinuous Galerkin (HDG) approximation of the underlying PDE, which allows for a rapid and accurate evaluation of the input-output relationship represented by a functional of the solution of the PDE. The method has been devised for problems where an affine parametrization of the PDE in terms of the uncertain input parameters may be obtained. This particular structure enables us to seek an offline-online computational strategy to economize the output evaluation. Indeed, the offline stage (performed once) is computationally intensive since its computational complexity depends on the dimension of the underlying high-order discontinuous finite element space. The online stage (performed many times) provides rapid output evaluation with a computational cost which is several orders of magnitude smaller than the computational cost of the HDG approximation. In addition, we incorporate two ingredients to the reduced-basis method. First, we employ the greedy algorithm to drive the sampling in the parameter space, by computing inexpensive bounds of the error in the output on the online stage. These error bounds allow us to detect which samples contribute most to the error, thereby enriching the reduced basis with high-quality basis functions. Furthermore, we develop the reduced basis for not only the primal problem, but also the adjoint problem. This allows us to compute an improved reduced basis output that is crucial in reducing the number of basis functions needed to achieve a prescribed error tolerance. Once the reduced bases have been constructed, we employ Monte-Carlo based sampling methods to perform the uncertainty propagation. The main achievement is that the forward evaluations needed for each Monte-Carlo sample are inexpensive, and therefore statistics of the output can be computed very efficiently. This combined technique renders an uncertainty propagation method that requires a small number of full forward model evaluations and thus greatly reduces the computational burden. We apply our approach to study the heat conduction of the thermal fin under uncertainty from the diffusivity coefficient and the wave propagation generated by a Gaussian source under uncertainty from the propagation medium. We shall also compare our approach to stochastic collocation methods and Monte-Carlo methods to assess the reliability of the computations.by Ferran Vidal-Codina.S.M
    • ā€¦
    corecore