126 research outputs found

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    MAC layer assisted localization in wireless environments with multiple sensors and multiple emitters

    Get PDF
    Extreme emitter density (EED) RF environments, defined as 10k-100k emitters within a footprint of less than 1 km squared, are becoming increasingly common with the proliferation of personal devices containing myriad communication standards (e.g. WLAN, Bluetooth, 4G, etc). Attendees at concerts, sporting events, and other such large-scale events desire to be connected at all times, creating tremendous spectrum management challenges, especially in unlicensed frequencies such as 2.4 GHz, 5 GHz, or 900 MHz Industrial, Scientific, and Medical (ISM) bands. In licensed bands, there are often critical communication systems such as two-way radios for emergency personnel which must be free from interference. Identification and localization of a non-conforming or interfering Emitter of Interest (EoI) is important for these critical systems. In this dissertation, research is conducted to improve localization for these EED RF environments by exploiting side information available at the Medium Access Control (MAC) layer. The primary contributions of this research are: (1) A testbed in Bobby Dodd football stadium consisting of three spatially distributed, time-synchronized RF Sensor Nodes (RFSN) collecting and archiving complex baseband samples for algorithm development and validation. (2) A modeling framework and analytical results on the benefits of exploiting the structure of the MAC layer for associating physical layer measurements, such as Time Difference of Arrivals (TDoA), to emitters. (3) A three stage localization algorithm exploiting time between packets and a constrained geometry to shrink the error ellipse of the emitter position estimate. The results are expected to improve localization accuracy in wireless environments when multiple sensors observe multiple emitters using a known communications protocol within a constrained geometry.Ph.D

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    A supporting infrastructure for Wireless Sensor Networks in Critical Industrial Environments

    Get PDF
    Tese de doutoramento no Programa de Doutoramento em CiĂȘncias e Tecnologias da Informação apresentada Ă  Faculdade de CiĂȘncias e Tecnologia da Universidade de Coimbra.As Redes de Sensores Sem Fios (RSSFs) tĂȘm uma aplicabilidade muito elevada nas mais diversas ĂĄreas, como na indĂșstria, nos sistemas militares, na saĂșde e nas casas inteligentes. No entanto, continuam a existir vĂĄrias limitaçÔes que impedem que esta tecnologia tenha uma utilização extensiva. A fiabilidade Ă© uma destas principais limitaçÔes que tem atrasado a adopção das RSSFs em ambientes industriais, principalmente quando sujeitos a elevadas interferĂȘncias e ruĂ­dos. Por outro lado, a interoperabilidade Ă© tambĂ©m um dos principais requisitos a cumprir nomeadamente com o avanço para o paradigma da Internet of Things. A determinação da localização dos nĂłs, principalmente dos nĂłs mĂłveis, Ă©, tambĂ©m ele, um requisito crĂ­tico em muitas aplicaçÔes. Esta tese de doutoramento propĂ”e novas soluçÔes para a integração e para a localização de RSSFs que operem em ambientes industriais e crĂ­ticos. Como os nĂłs sensores sĂŁo, na maioria das vezes, instalados e deixados sem intervenção humana durante longos perĂ­odos de tempo, isto Ă©, meses ou mesmo anos, Ă© muito importante oferecer processos de comunicação fiĂĄvel. No entanto, muitos problemas ocorrem durante a transmissĂŁo dos pacotes, nomeadamente devido a ruĂ­dos, interferĂȘncias e perda de potĂȘncia do sinal. A razĂŁo das interferĂȘncias deve-se Ă  existĂȘncia de mais do que uma rede ou ao espalhamento espectral que ocorre em determinadas frequĂȘncias. Este tipo de problemas Ă© mais severo em ambientes dinĂąmicos nos quais novas fontes de ruĂ­do pode ser introduzidas em qualquer instante de tempo, nomeadamente com a chegadas de novos dispositivos ao meio. Consequentemente, Ă© necessĂĄrio que as RSSFs tenham a capacidade de lidar com as limitaçÔes e as falhas nos processos de comunicação. O protocolo Dynamic MAC (DunMAC) proposto nesta dissertação utiliza tĂ©cnicas de rĂĄdio cognitivo (CR) para que a RSSF se adapte, de forma dinĂąmica, a ambientes instĂĄveis e ruidosos atravĂ©s da selecção automĂĄtica do melhor canal durante o perĂ­odo de operação. As RSSFs nĂŁo podem operar em isolação completa do meio, e necessitam de ser monitoradas e controladas por aplicaçÔes externas. Apesar de ser possĂ­vel adicionar a pilha protocolar IP aos nĂłs sensores, este procedimento nĂŁo Ă© adequado para muitas aplicaçÔes. Para estes casos, os modelos baseados em gateway ou proxies continuam a apresentar-se preferĂ­veis para o processo de integração. Um dos desafios existentes para estes processos de integração Ă© a sua adaptabilidade, isto Ă©, a capacidade da gateway ou do proxy poder ser reutilizado sem alteraçÔes por outras aplicaçÔes. A razĂŁo desta limitação deve-se aos consumidores finais dos dados serem aplicaçÔes e nĂŁo seres humanos. Logo, Ă© difĂ­cil ou mesmo impossĂ­vel criar normas para as estruturas de dados dada a infinidade de diferentes formatos. É entĂŁo desejĂĄvel encontrar uma solução que permita uma integração transparente de diferentes RSSFs e aplicaçÔes. A linguagem Sensor Traffic Description Language (STDL) proposta nesta dissertação propĂ”e uma solução para esta integração atravĂ©s de gateways e proxies flexĂ­veis e adaptados Ă  diversidade de aplicaçÔes, e sem recorrer Ă  reprogramação. O conhecimento da posição dos nĂłs sensores Ă©, tambĂ©m ele, crĂ­tico em muitas aplicaçÔes industriais como no controlo da deslocação dos objectos ou trabalhadores. Para alĂ©m do mais, a maioria dos valores recolhidos dos sensores sĂł sĂŁo Ășteis quando acompanhados pelo conhecimento do local onde esses valores foram recolhidos. O Global Positioning Systems (GPS) Ă© a mais conhecida solução para a determinação da localização. No entanto, o recurso ao GPS em cada nĂł sensor continua a ser energeticamente ineficiente e impraticĂĄvel devido aos custos associados. Para alĂ©m disso, os sistemas GPS nĂŁo sĂŁo apropriados para ambientes in-door. Este trabalho de doutoramento propĂ”e-se actuar nestas ĂĄreas. Em particular, Ă© proposto, implementado e avaliado o protocolo DynMAC para oferecer fiabilidade Ă s RSSFs. Para a segunda temĂĄtica, a linguagem STDL e o seu motor sĂŁo propostos para suportar a integração de ambientes heterogĂ©neos de RSSFs e aplicaçÔes. As soluçÔes propostas nĂŁo requerem reprogramação e suportam tambĂ©m serviços de localização nas RSSFs. Diferentes mĂ©todos de localização foram avaliados para estimar a localização dos nĂłs. Assim, com estes mĂ©todos as RSSFs podem ser usadas como componentes para integrar e suportar a Futura Internet. Todas as soluçÔes propostas nesta tese foram implementadas e validadas tanto em simulação com em plataformas prĂĄticas, laboratoriais e industriais.The Wireless Sensor Network (WSN) has a countless number of applications in almost all of the fields including military, industrial, healthcare, and smart home environments. However, there are several problems that prevent the widespread of sensor networks in real situations. Among them, the reliability of communication especially in noisy industrial environments is difficult to guarantee. In addition, interoperability between the sensor networks and external applications is also a challenge. Moreover, determining the position of nodes, particularly mobile nodes, is a critical requirement in many types of applications. My original contributions in this thesis include reliable communication, integration, localization solutions for WSNs operating in industrial and critical environments. Because sensor nodes are usually deployed and kept unattended without human intervention for a long duration, e.g. months or even years, it is a crucial requirement to provide the reliable communication for the WSNs. However, many problems arise during packet transmission and are related to the transmission medium (e.g. signal path-loss, noise and interference). Interference happens due to the existence of more than one network or by the spectral spread that happens in some frequencies. This type of problem is more severe in dynamic environments in which noise sources can be introduced at any time or new networks and devices that interfere with the existing one may be added. Consequently, it is necessary for the WSNs to have the ability to deal with the communication failures. The Dynamic MAC (DynMAC) protocol proposed in this thesis employs the Cognitive Radio (CR) techniques to allow the WSNs to adapt to the dynamic noisy environments by automatically selecting the best channel during its operation time. The WSN usually cannot operate in complete isolation, but it needs to be monitored, controlled and visualized by external applications. Although it is possible to add an IP protocol stack to sensor nodes, this approach is not appropriate for many types of WSNs. Consequently, the proxy and gateway approach is still a preferred method for integrating sensor networks with external networks and applications. The problem of the current integration solutions for WSNs is the adaptability, i.e., the ability of the gateway or proxy developed for one sensor network to be reused, unchanged, for others which have different types of applications and data frames. One reason behind this problem is that it is difficult or even impossible to create a standard for the structure of data inside the frame because there are such a huge number of possible formats. Consequently, it is necessary to have an adaptable solution for easily and transparently integrating WSNs and application environments. In this thesis, the Sensor Traffic Description Language (STDL) was proposed for describing the structure of the sensor networks’ data frames, allowing the framework to be adapted to a diversity of protocols and applications without reprogramming. The positions of sensor nodes are critical in many types of industrial applications such as object tracking, location-aware services, worker or patient tracking, etc. In addition, the sensed data is meaningless without the knowledge of where it is obtained. Perhaps the most well-known location-sensing system is the Global Positioning System (GPS). However, equipping GPS sensor for each sensor node is inefficient or unfeasible for most of the cases because of its energy consumption and cost. In addition, GPS is not appropriate in some environments, e.g., indoors. Similar to the original concept of WSNs, the localization solution should also be cheap and with low power consumption. This thesis aims to deal with the above problems. In particular, in order to add the reliability for WSN, DynMAC protocol was proposed, implemented and evaluated. This protocol adds a mechanism to automatically deal with the noisy and changeable environments. For the second problem, the STDL and its engine provide the adaptable capability to the framework for interoperation between sensor networks and external applications. The proposed framework requires no reprogramming when deploying it for new applications and protocols of WSNs. Moreover, the framework also supports localization services for positioning the unknown position sensor nodes in WSNs. The different localization methods are employed to estimate the location of mobile nodes. With the proposed framework, WSNs can be used as plug and play components for integrating with the Future Internet. All the proposed solutions were implemented and validated using simulation and real testbeds in both the laboratory and industrial environments

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels

    Detection of Man-in-the-middle Attacks Using Physical Layer Wireless Security Techniques

    Get PDF
    In a wireless network environment, all the users are able to access the wireless channel. Thus, if malicious users exploit this feature by mimicking the characteristics of a normal user or even the central wireless access point (AP), they can intercept almost all the information through the network. This scenario is referred as a Man-in-the-middle (MITM) attack. In the MITM attack, the attackers usually set up a rogue AP to spoof the clients. In this thesis, we focus on the detection of MITM attacks in Wi-Fi networks. The thesis introduces the entire process of performing and detecting the MITM attack in two separate sections. The first section starts from creating a rogue AP by imitating the characteristics of the legitimate AP. Then a multi-point jamming attack is conducted to kidnap the clients and force them to connect to the rogue AP. Furthermore, the sniffer software is used to intercept the private information passing through the rogue AP. The second section focuses on the detection of MITM attacks from two aspects: jamming attacks detection and rogue AP detection. In order to enable the network to perform defensive strategies more effectively, distinguishing different types of jamming attacks is necessary. We begin by using signal strength consistency mechanism in order to detect jamming attacks. Then, based on the statistical data of packets send ratio (PSR) and packets delivery ratio (PDR) in different jamming situations, a model is built to further differentiate the jamming attacks. At the same time, we gather the received signal strength indication (RSSI) values from three monitor nodes which process the random RSSI values employing a sliding window algorithm. According to the mean and standard deviation curve of RSSI, we can detect if a rogue AP is present within the vicinity. All these proposed approaches, either attack or detection, have been validated via computer simulations and experimental hardware implementations including Backtrack 5 Tools and MATLAB software suite
    • 

    corecore