23,388 research outputs found

    Is there a physically universal cellular automaton or Hamiltonian?

    Full text link
    It is known that both quantum and classical cellular automata (CA) exist that are computationally universal in the sense that they can simulate, after appropriate initialization, any quantum or classical computation, respectively. Here we introduce a different notion of universality: a CA is called physically universal if every transformation on any finite region can be (approximately) implemented by the autonomous time evolution of the system after the complement of the region has been initialized in an appropriate way. We pose the question of whether physically universal CAs exist. Such CAs would provide a model of the world where the boundary between a physical system and its controller can be consistently shifted, in analogy to the Heisenberg cut for the quantum measurement problem. We propose to study the thermodynamic cost of computation and control within such a model because implementing a cyclic process on a microsystem may require a non-cyclic process for its controller, whereas implementing a cyclic process on system and controller may require the implementation of a non-cyclic process on a "meta"-controller, and so on. Physically universal CAs avoid this infinite hierarchy of controllers and the cost of implementing cycles on a subsystem can be described by mixing properties of the CA dynamics. We define a physical prior on the CA configurations by applying the dynamics to an initial state where half of the CA is in the maximum entropy state and half of it is in the all-zero state (thus reflecting the fact that life requires non-equilibrium states like the boundary between a hold and a cold reservoir). As opposed to Solomonoff's prior, our prior does not only account for the Kolmogorov complexity but also for the cost of isolating the system during the state preparation if the preparation process is not robust.Comment: 27 pages, 1 figur

    Anticoncentration theorems for schemes showing a quantum speedup

    Get PDF
    One of the main milestones in quantum information science is to realise quantum devices that exhibit an exponential computational advantage over classical ones without being universal quantum computers, a state of affairs dubbed quantum speedup, or sometimes "quantum computational supremacy". The known schemes heavily rely on mathematical assumptions that are plausible but unproven, prominently results on anticoncentration of random prescriptions. In this work, we aim at closing the gap by proving two anticoncentration theorems and accompanying hardness results, one for circuit-based schemes, the other for quantum quench-type schemes for quantum simulations. Compared to the few other known such results, these results give rise to a number of comparably simple, physically meaningful and resource-economical schemes showing a quantum speedup in one and two spatial dimensions. At the heart of the analysis are tools of unitary designs and random circuits that allow us to conclude that universal random circuits anticoncentrate as well as an embedding of known circuit-based schemes in a 2D translation-invariant architecture.Comment: 12+2 pages, added applications sectio

    Testing Linear-Invariant Non-Linear Properties

    Get PDF
    We consider the task of testing properties of Boolean functions that are invariant under linear transformations of the Boolean cube. Previous work in property testing, including the linearity test and the test for Reed-Muller codes, has mostly focused on such tasks for linear properties. The one exception is a test due to Green for "triangle freeness": a function f:\cube^{n}\to\cube satisfies this property if f(x),f(y),f(x+y)f(x),f(y),f(x+y) do not all equal 1, for any pair x,y\in\cube^{n}. Here we extend this test to a more systematic study of testing for linear-invariant non-linear properties. We consider properties that are described by a single forbidden pattern (and its linear transformations), i.e., a property is given by kk points v_{1},...,v_{k}\in\cube^{k} and f:\cube^{n}\to\cube satisfies the property that if for all linear maps L:\cube^{k}\to\cube^{n} it is the case that f(L(v1)),...,f(L(vk))f(L(v_{1})),...,f(L(v_{k})) do not all equal 1. We show that this property is testable if the underlying matroid specified by v1,...,vkv_{1},...,v_{k} is a graphic matroid. This extends Green's result to an infinite class of new properties. Our techniques extend those of Green and in particular we establish a link between the notion of "1-complexity linear systems" of Green and Tao, and graphic matroids, to derive the results.Comment: This is the full version; conference version appeared in the proceedings of STACS 200

    Convex computation of the region of attraction of polynomial control systems

    Get PDF
    We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description

    Designing Software Architectures As a Composition of Specializations of Knowledge Domains

    Get PDF
    This paper summarizes our experimental research and software development activities in designing robust, adaptable and reusable software architectures. Several years ago, based on our previous experiences in object-oriented software development, we made the following assumption: ‘A software architecture should be a composition of specializations of knowledge domains’. To verify this assumption we carried out three pilot projects. In addition to the application of some popular domain analysis techniques such as use cases, we identified the invariant compositional structures of the software architectures and the related knowledge domains. Knowledge domains define the boundaries of the adaptability and reusability capabilities of software systems. Next, knowledge domains were mapped to object-oriented concepts. We experienced that some aspects of knowledge could not be directly modeled in terms of object-oriented concepts. In this paper we describe our approach, the pilot projects, the experienced problems and the adopted solutions for realizing the software architectures. We conclude the paper with the lessons that we learned from this experience

    Generalized liquid crystals: giant fluctuations and the vestigial chiral order of II, OO and TT matter

    Full text link
    The physics of nematic liquid crystals has been subject of intensive research since the late 19th century. However, because of the limitations of chemistry the focus has been centered around uni- and biaxial nematics associated with constituents bearing a D∞hD_{\infty h} or D2hD_{2h} symmetry respectively. In view of general symmetries, however, these are singularly special since nematic order can in principle involve any point group symmetry. Given the progress in tailoring nano particles with particular shapes and interactions, this vast family of "generalized nematics" might become accessible in the laboratory. Little is known since the order parameter theories associated with the highly symmetric point groups are remarkably complicated, involving tensor order parameters of high rank. Here we show that the generic features of the statistical physics of such systems can be studied in a highly flexible and efficient fashion using a mathematical tool borrowed from high energy physics: discrete non-Abelian gauge theory. Explicitly, we construct a family of lattice gauge models encapsulating nematic ordering of general three dimensional point group symmetries. We find that the most symmetrical "generalized nematics" are subjected to thermal fluctuations of unprecedented severity. As a result, novel forms of fluctuation phenomena become possible. In particular, we demonstrate that a vestigial phase carrying no more than chiral order becomes ubiquitous departing from high point group symmetry chiral building blocks, such as II, OO and TT symmetric matter.Comment: 14 pages, 5 figures; published versio
    • 

    corecore