1,458 research outputs found

    Second-Order Consensus of Networked Mechanical Systems With Communication Delays

    Full text link
    In this paper, we consider the second-order consensus problem for networked mechanical systems subjected to nonuniform communication delays, and the mechanical systems are assumed to interact on a general directed topology. We propose an adaptive controller plus a distributed velocity observer to realize the objective of second-order consensus. It is shown that both the positions and velocities of the mechanical agents synchronize, and furthermore, the velocities of the mechanical agents converge to the scaled weighted average value of their initial ones. We further demonstrate that the proposed second-order consensus scheme can be used to solve the leader-follower synchronization problem with a constant-velocity leader and under constant communication delays. Simulation results are provided to illustrate the performance of the proposed adaptive controllers.Comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Contro

    Control of flexible joint robotic manipulator using tuning functions design

    Full text link
    The goal of this thesis is to design the controller for a single arm manipulator having a flexible joint for the tracking problem in two different cases. A controller is designed for a deterministic case wherein the plant parameters are assumed to be known while another is designed for an adaptive case where all the plant parameters are assumed to be unknown. In general the tracking problem is; given a smooth reference trajectory, the end effector has to track the reference while maintaining the stability. It is assumed that only the output of the manipulator, which is the link angle, is available for measurement. Also without loss of generality, the fast dynamics, that is the dynamics of the driver side of the system are neglected for the sake of simplicity; In the first case, the design procedure adopted is called observer backstepping. Since the states of the system are unavailable for measurement, an observer is designed that estimates the system states. These estimates are fed to the controller which in turn produces the control input to the system; The second case employs a design procedure called tuning functions design. In this case, since the plant parameters are unknown, the observer designed in case one cannot be used for determining the state estimates. For this purpose, parameter update laws and filters are designed for estimation of plant parameters. The filters employed are k-filters. The k-filters and the parameter update laws are given as input to the controller, which generates the control input to the system; For both cases, the mathematical models are simulated using Matlab/Simulink, and the results are verified

    On-line state and parameter estimation in nonlinear systems

    Get PDF
    On-line, simultaneous state and parameters estimation in deterministic, nonlinear dynamic systems of known structure is the problem considered. Available methods are few and fall short of user needs in that they are difficult to apply, their applicability is restricted to limited classes of systems, and for some, conditions guaranteeing their convergence don\u27t exist. The new methods developed herein are placed into two categories: those that involve the use of Riccati equations, and those that do not. Two of the new methods do not use Riccati equations, and each is considered to be a different extension of Friedland\u27 s parameter observer for nonlinear systems with full state availability to the case of partial state availability. One is essentially a reduced-order variant of a state and parameter estimator developed by Raghavan. The other is developed by the direct extension of Friedland\u27 s parameter observer to the case of partial state availability. Both are shown to be globally asymptotically stable for nonlinear systems affine in the unknown parameters and involving nonlinearities that depend on known quantities, a class restriction also true of existing state and parameter estimation methods. The two new methods offer, however, the advantages of improved computational efficiency and the potential for superior transient performance, which is demonstrated in a simulation example. Of the new methods that do involve a Riccati equation, there are three. The first is the separate-bias form of the reduced-order Kalman filter. The scope of this filter is somewhat broader than the others developed herein in that it is an optimal filter for linear, stochastic systems involving noise-free observations. To apply this filter to the joint state and parameter estimation problem, one interprets the unknown parameters as constant biases. For the system class defined above, the method is globally asymptotically stable. The second Riccati equation based method is derived by the application of an existing method, the State Dependent Algebraic Riccati Equation (SDARE) filtering method, to the problem of state and parameter estimation. It is shown to work well in several nonlinear examples involving a few unknown parameters; however, as the number of parameters increases, the method\u27s applicability is diminished due to an apparent loss of observability within the filter which hinders the generation of filter gains. The third is a new filtering method which uses a State Dependent Differential Riccati Equation (SDDRE) for the generation of filter gains, and through its use, avoids the “observability” shortcomings of the SDARE method. This filter is similar to the Extended Kalman Filter (EKF), and is compared to the EKF with regard to stability through a Lyapunov analysis, and with regard to performance in a 4th order stepper motor simulation involving 5 unknown parameters. For the very broad class of systems that are bilinear in the state and unknown parameters, and potentially involving products of unmeasured states and unknown parameters, the EKF is shown to possess a semi-global region of asymptotic stability, given the assumption of observability and controllability along estimated trajectories. The stability of the new SDDRE filter is discussed

    Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems

    Get PDF
    The problems of speed observation and position feedback stabilization of mechanical systems are addressed in this paper. Our interest is centered on systems that can be rendered linear in the velocities via a (partial) change of coordinates. It is shown that the class is fully characterized by the solvability of a set of partial differential equations (PDEs) and strictly contains the class studied in the existing literature on linearization for speed observation or control. A reduced order globally exponentially stable observer, constructed using the immersion and invariance methodology, is proposed. The design requires the solution of another set of PDEs, which are shown to be solvable in several practical examples. It is also proven that the full order observer with dynamic scaling recently proposed by Karagiannis and Astolfi obviates the need to solve the latter PDEs. Finally, it is shown that the observer can be used in conjunction with an asymptotically stabilizing full state-feedback interconnection and damping assignment passivity-based controller preserving asymptotic stability.</p

    The output regulation problem : a convergent dynamics approach

    Get PDF
    +192hlm.;24c

    Non-linear estimation is easy

    Get PDF
    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint

    Permanent Magnet Synchronous Motors are Globally Asymptotically Stabilizable with PI Current Control

    Get PDF
    This note shows that the industry standard desired equilibrium for permanent magnet synchronous motors (i.e., maximum torque per Ampere) can be globally asymptotically stabilized with a PI control around the current errors, provided some viscous friction (possibly small) is present in the rotor dynamics and the proportional gain of the PI is suitably chosen. Instrumental to establish this surprising result is the proof that the map from voltages to currents of the incremental model of the motor satisfies some passivity properties. The analysis relies on basic Lyapunov theory making the result available to a wide audience

    Output-feedback design for non-smooth mechanical systems : control synthesis and experiments

    Get PDF
    In this thesis, the focus is on two control problems for non-smooth systems. Firstly, the disturbance attenuation problem for piecewise linear (PWL) and piecewise affine (PWA) systems is studied. Here, we focus on applications in the field of perturbed flexible mechanical systems with PWL restoring characteristics. Secondly, the stabilization problem for Lur’e type systems with set-valued nonlinearities is examined. In the latter context, the focus is on the application area of mechanical systems with set-valued friction characteristics, where the friction is non-collocated with the control action. In this thesis, in order to deal with both the disturbance attenuation problem and the stabilization problem, observer-based output-feedback control strategies are proposed. More specifically, the disturbance attenuation problem for perturbed PWL and PWA mechanical systems is an important control problem. Namely, the attenuation of the disturbances acting on these systems is important because it avoids damages to the structures and allows for increased system performance. Classical examples of mechanical systems with PWL and PWA restoring characteristics are tower cranes, suspension bridges, snubbers on solar panels on satellites, floating platforms for oil exploration, etc. Therefore, a controller design strategy is proposed for a class of perturbed PWL/PWA systems based on the notions of convergence and input-to-state convergence. The control design aims at the performance of such control designs in terms of disturbance attenuation for the specific class of periodic disturbances and the more general class of bounded disturbances. Roughly speaking, a system that is convergent, has, for each bounded disturbance, a unique globally asymptotically stable steady-state solution that is bounded for all time. A system is input-to-state convergent for a class of bounded disturbances if it is convergent and ISS with respect to the system’s unique steady-state solution. The input-to-state convergence property is instrumental in constructing output-feedback schemes. In the present work, we render a system convergent by means of feedback. To guarantee the practical applicability of the convergence-based controllers, a saturation constraint is proposed that provides a guaranteed upper bound on the control input, given an upper bound for the disturbances and a set of initial conditions. Next, an ultimate bound for the system state given a bound on the disturbances is proposed. Finally, performance measures based on computed steady-state responses for a specific class of disturbances (in our case harmonic disturbances) are presented. The motivation for the choice of harmonic disturbances lies in the fact that in engineering practice many disturbances can be approximated by a finite sum of harmonic signals (or are even harmonic as in systems with mass-unbalance). The ultimate objective of this part of the thesis is the implementation of the controller design strategy in an experimental environment, which implies that only measurements of a limited number of state variables will be available. Therefore, observers for PWL/PWA systems are used and a result that combines the controller and the observer in an outputfeedback strategy is provided. The convergent-based controller design strategy is applied to an experimental piecewise linear system and its effectiveness is shown in experiments. The stabilization of mechanical systems with friction is another challenging unsolved control problem because the presence of friction can induce unwanted phenomena such as self-sustained vibrations, chatter and squeal. These phenomena are unwanted in many engineering applications because they can destabilize a system and/or limit the system performance. Classical examples of mechanical systems with friction are industrial robots, drilling rigs, turbine blade dampers, accurate mirror positioning systems on satellites, printers and many more. Therefore, a control design strategy is proposed for a class of discontinuous systems; namely Lur’e systems with set-valued mappings. Here the focus is on the application area of mechanical systems with discontinuous friction. These systems exhibit unwanted (stick-slip) limit cycling which we aim to avoid entirely by the control design. In this work, we consider the problem of noncollocated friction and actuation, which rules out the application of common friction compensation techniques. The control design strategy proposed here is based on the notion of passivity and the Popov criterion. In addition to that, it is shown that the resulting closed-loop system is robust with respect to uncertainties in the discontinuous friction model under some mild constraints for the model that describes the friction. Once again, the aim is to implement this strategy on a mechanical experimental set-up with limited measurements. Therefore, an observer for Lur’e systems with multi-valued mappings is used as a state estimator and a result that combines the controller and the observer in an output-feedback strategy is provided. The passivity-based controller design strategy is implemented on a dynamic rotor system with friction in one of its components. The implemented output-feedback controller is evaluated in both simulations and experiments. Generally speaking, to show the strengths, weaknesses and potential of output-feedback controllers beyond their theoretical importance, it is indispensable to evaluate them in experimental and industrial setups. As such the presented case studies can be considered as benchmarks for the proposed observer-based controller designs for non-smooth and discontinuous systems. The value of non-smooth and discontinuous models and observer-based controllers is also evidenced by this work, as it demonstrates the effectiveness for real-life applications
    • …
    corecore