1,475 research outputs found

    Compression for Smooth Shape Analysis

    Full text link
    Most 3D shape analysis methods use triangular meshes to discretize both the shape and functions on it as piecewise linear functions. With this representation, shape analysis requires fine meshes to represent smooth shapes and geometric operators like normals, curvatures, or Laplace-Beltrami eigenfunctions at large computational and memory costs. We avoid this bottleneck with a compression technique that represents a smooth shape as subdivision surfaces and exploits the subdivision scheme to parametrize smooth functions on that shape with a few control parameters. This compression does not affect the accuracy of the Laplace-Beltrami operator and its eigenfunctions and allow us to compute shape descriptors and shape matchings at an accuracy comparable to triangular meshes but a fraction of the computational cost. Our framework can also compress surfaces represented by point clouds to do shape analysis of 3D scanning data

    The mechanical response of cellular materials with spinodal topologies

    Full text link
    The mechanical response of cellular materials with spinodal topologies is numerically and experimentally investigated. Spinodal microstructures are generated by the numerical solution of the Cahn-Hilliard equation. Two different topologies are investigated: "solid models," where one of the two phases is modeled as a solid material and the remaining volume is void space; and "shell models," where the interface between the two phases is assumed to be a solid shell, with the rest of the volume modeled as void space. In both cases, a wide range of relative densities and spinodal characteristic feature sizes are investigated. The topology and morphology of all the numerically generated models are carefully characterized to extract key geometrical features and ensure that the distribution of curvatures and the aging law are consistent with the physics of spinodal decomposition. Finite element meshes are generated for each model, and the uniaxial compressive stiffness and strength are extracted. We show that while solid spinodal models in the density range of 30-70% are relatively inefficient (i.e., their strength and stiffness exhibit a high-power scaling with relative density), shell spinodal models in the density range of 0.01-1% are exceptionally stiff and strong. Spinodal shell materials are also shown to be remarkably imperfection insensitive. These findings are verified experimentally by in-situ uniaxial compression of polymeric samples printed at the microscale by Direct Laser Writing (DLW). At low relative densities, the strength and stiffness of shell spinodal models outperform those of most lattice materials and approach theoretical bounds for isotropic cellular materials. Most importantly, these materials can be produced by self-assembly techniques over a range of length scales, providing unique scalability

    Focal surfaces of discrete geometry

    Get PDF
    The differential geometry of smooth three-dimensional surfaces can be interpreted from one of two perspectives: in terms of oriented frames located on the surface, or in terms of a pair of associated focal surfaces. These focal surfaces are swept by the loci of the principal curvatures' radii. In this article, we develop a focal-surface-based differential geometry interpretation for discrete mesh surfaces. Focal surfaces have many useful properties. For instance, the normal of each focal surface indicates a principal direction of the corresponding point on the original surface. We provide algorithms to robustly approximate the focal surfaces of a triangle mesh with known or estimated normals. Our approach locally parameterizes the surface normals about a point by their intersections with a pair of parallel planes. We show neighboring normal triplets are constrained to pass simultaneously through two slits, which are parallel to the specified parametrization planes and rule the focal surfaces. We develop both CPU and GPU-based algorithms to efficiently approximate these two slits and, hence, the focal meshes. Our focal mesh estimation also provides a novel discrete shape operator that simultaneously estimates the principal curvatures and principal directions.Engineering and Applied Science
    • …
    corecore