21,510 research outputs found

    Cardinal Exponential Splines: Part II—Think Analog, Act Digital

    Get PDF
    By interpreting the Green-function reproduction property of exponential splines in signal processing terms, we uncover a fundamental relation that connects the impulse responses of allpole analog filters to their discrete counterparts. The link is that the latter are the B-spline coefficients of the former (which happen to be exponential splines). Motivated by this observation, we introduce an extended family of cardinal splines—the generalized E-splines—to generalize the concept for all convolution operators with rational transfer functions. We construct the corresponding compactly-supported B-spline basis functions, which are characterized by their poles and zeros, thereby establishing an interesting connection with analog filter design techniques. We investigate the properties of these new B-splines and present the corresponding signal processing calculus, which allows us to perform continuous-time operations, such as convolution, differential operators, and modulation, by simple application of the discrete version of these operators in the B-spline domain. In particular, we show how the formalism can be used to obtain exact, discrete implementations of analog filters. Finally, we apply our results to the design of hybrid signal processing systems that rely on digital filtering to compensate for the nonideal characteristics of real-world analog-to-digital (A-to-D) and D-to-A conversion systems

    On discrete simplex splines and subdivision

    Get PDF
    Discrete analogoues of multivariate simplex splines are introduced. Their study yields a subdivision scheme for simplex splines

    Fast space-variant elliptical filtering using box splines

    Get PDF
    The efficient realization of linear space-variant (non-convolution) filters is a challenging computational problem in image processing. In this paper, we demonstrate that it is possible to filter an image with a Gaussian-like elliptic window of varying size, elongation and orientation using a fixed number of computations per pixel. The associated algorithm, which is based on a family of smooth compactly supported piecewise polynomials, the radially-uniform box splines, is realized using pre-integration and local finite-differences. The radially-uniform box splines are constructed through the repeated convolution of a fixed number of box distributions, which have been suitably scaled and distributed radially in an uniform fashion. The attractive features of these box splines are their asymptotic behavior, their simple covariance structure, and their quasi-separability. They converge to Gaussians with the increase of their order, and are used to approximate anisotropic Gaussians of varying covariance simply by controlling the scales of the constituent box distributions. Based on the second feature, we develop a technique for continuously controlling the size, elongation and orientation of these Gaussian-like functions. Finally, the quasi-separable structure, along with a certain scaling property of box distributions, is used to efficiently realize the associated space-variant elliptical filtering, which requires O(1) computations per pixel irrespective of the shape and size of the filter.Comment: 12 figures; IEEE Transactions on Image Processing, vol. 19, 201

    Generalizations of the sampling theorem: Seven decades after Nyquist

    Get PDF
    The sampling theorem is one of the most basic and fascinating topics in engineering sciences. The most well-known form is Shannon's uniform-sampling theorem for bandlimited signals. Extensions of this to bandpass signals and multiband signals, and to nonuniform sampling are also well-known. The connection between such extensions and the theory of filter banks in DSP has been well established. This paper presents some of the less known aspects of sampling, with special emphasis on non bandlimited signals, pointwise stability of reconstruction, and reconstruction from nonuniform samples. Applications in multiresolution computation and in digital spline interpolation are also reviewed

    C2 piecewise cubic quasi-interpolants on a 6-direction mesh

    Get PDF
    We study two kinds of quasi-interpolants (abbr. QI) in the space of C2 piecewise cubics in the plane, or in a rectangular domain, endowed with the highly symmetric triangulation generated by a uniform 6-direction mesh. It has been proved recently that this space is generated by the integer translates of two multi-box splines. One kind of QIs is of differential type and the other of discrete type. As those QIs are exact on the space of cubic polynomials, their approximation order is 4 for sufficiently smooth functions. In addition, they exhibit nice superconvergent properties at some specific points. Moreover, the infinite norms of the discrete QIs being small, they give excellent approximations of a smooth function and of its first order partial derivatives. The approximation properties of the QIs are illustrated by numerical examples
    • …
    corecore