502 research outputs found

    Characterization of the spectral distribution of hyperspectral imagery for improved exploitation

    Get PDF
    Widely used methods of target, anomaly, and change detection when applied to spectral imagery provide less than desirable results due to the complex nature of the data. In the case of hyperspectral data, dimension reduction techniques are employed to reduce the amount of data used in the detection algorithms in order to produce better results and/or decreased computation time. This essentially ignores a significant amount of the data collected in k unique spectral bands. Methods presented in this work explore using the distribution of the collected data in the full k dimensions in order to identify regions of interest contained in spatial tiles of the scene. Here, interest is defined as small and large scale manmade activity. The algorithms developed in this research are primarily data driven with a limited number of assumptions. These algorithms will individually be applied to spatial subsets or tiles of the full scene to indicate the amount of interest contained. Each tile is put through a series of tests using the algorithms based on the full distribution of the data in the hyperspace. The scores from each test will be combined in such a way that each tile is labeled as either interesting or not interesting. This provides a cueing mechanism for image analysts to visually inspect locations within a hyperspectral scene with a high likelihood of containing manmade activity

    Function-valued Mappings and SSIM-based Optimization in Imaging

    Get PDF
    In a few words, this thesis is concerned with two alternative approaches to imag- ing, namely, Function-valued Mappings (FVMs) and Structural Similarity Index Measure (SSIM)-based Optimization. Briefly, a FVM is a mathematical object that assigns to each element in its domain a function that belongs to a given function space. The advantage of this representation is that the infinite dimensionality of the range of FVMs allows us to give a more accurate description of complex datasets such as hyperspectral images and diffusion magnetic resonance images, something that can not be done with the classical representation of such data sets as vector-valued functions. For instance, a hyperspectral image can be described as a FVM that assigns to each point in a spatial domain a spectral function that belongs to the function space L2(R); that is, the space of functions whose energy is finite. Moreoever, we present a Fourier transform and a new class of fractal transforms for FVMs to analyze and process hyperspectral images. Regarding SSIM-based optimization, we introduce a general framework for solving op- timization problems that involve the SSIM as a fidelity measure. This framework offers the option of carrying out SSIM-based imaging tasks which are usually addressed using the classical Euclidean-based methods. In the literature, SSIM-based approaches have been proposed to address the limitations of Euclidean-based metrics as measures of vi- sual quality. These methods show better performance when compared to their Euclidean counterparts since the SSIM is a better model of the human visual system; however, these approaches tend to be developed for particular applications. With the general framework that it is presented in this thesis, rather than focusing on particular imaging tasks, we introduce a set of novel algorithms capable of carrying out a wide range of SSIM-based imaging applications. Moreover, such a framework allows us to include the SSIM as a fidelity term in optimization problems in which it had not been included before

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    HP2IFS: Head Pose estimation exploiting Partitioned Iterated Function Systems

    Full text link
    Estimating the actual head orientation from 2D images, with regard to its three degrees of freedom, is a well known problem that is highly significant for a large number of applications involving head pose knowledge. Consequently, this topic has been tackled by a plethora of methods and algorithms the most part of which exploits neural networks. Machine learning methods, indeed, achieve accurate head rotation values yet require an adequate training stage and, to that aim, a relevant number of positive and negative examples. In this paper we take a different approach to this topic by using fractal coding theory and particularly Partitioned Iterated Function Systems to extract the fractal code from the input head image and to compare this representation to the fractal code of a reference model through Hamming distance. According to experiments conducted on both the BIWI and the AFLW2000 databases, the proposed PIFS based head pose estimation method provides accurate yaw/pitch/roll angular values, with a performance approaching that of state of the art of machine-learning based algorithms and exceeding most of non-training based approaches

    The effectiveness of methods and algorithms for detecting and isolating factors that negatively affect the growth of crops

    Get PDF
    This article discusses a large number of textural features and integral transformations for the analysis of texture-type images. It also discusses the description and analysis of the features of applying existing methods for segmenting texture areas in images and determining the advantages and disadvantages of these methods and the problems that arise in the segmentation of texture areas in images. The purpose of the ongoing research is to use methods and determine the effectiveness of methods for the analysis of aerospace images, which are a combination of textural regions of natural origin and artificial objects. Currently, the automation of the processing of aerospace information, in particular images of the earth’s surface, remains an urgent task. The main goal is to develop models and methods for more efficient use of information technologies for the analysis of multispectral texture-type images in the developed algorithms. The article proposes a comprehensive approach to these issues, that is, the consideration of a large number of textural features by integral transformation to eventually create algorithms and programs applicable to solving a wide class of problems in agriculture.

    Image patch analysis of sunspots and active regions. I. Intrinsic dimension and correlation analysis

    Full text link
    The flare-productivity of an active region is observed to be related to its spatial complexity. Mount Wilson or McIntosh sunspot classifications measure such complexity but in a categorical way, and may therefore not use all the information present in the observations. Moreover, such categorical schemes hinder a systematic study of an active region's evolution for example. We propose fine-scale quantitative descriptors for an active region's complexity and relate them to the Mount Wilson classification. We analyze the local correlation structure within continuum and magnetogram data, as well as the cross-correlation between continuum and magnetogram data. We compute the intrinsic dimension, partial correlation, and canonical correlation analysis (CCA) of image patches of continuum and magnetogram active region images taken from the SOHO-MDI instrument. We use masks of sunspots derived from continuum as well as larger masks of magnetic active regions derived from the magnetogram to analyze separately the core part of an active region from its surrounding part. We find the relationship between complexity of an active region as measured by Mount Wilson and the intrinsic dimension of its image patches. Partial correlation patterns exhibit approximately a third-order Markov structure. CCA reveals different patterns of correlation between continuum and magnetogram within the sunspots and in the region surrounding the sunspots. These results also pave the way for patch-based dictionary learning with a view towards automatic clustering of active regions.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC). 23 pages, 11 figure

    Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods

    Get PDF
    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas

    A Vegetation Analysis on Horn Island, Mississippi, ca. 1940 Using Characteristic Dimensions Derived from Historical Aerial Photography

    Get PDF
    Horn Island is part of the MS/AL barrier island chain in the northern Gulf of Mexico located approximately 18kn off the coast of Mississippi. This island’s habitats have undergone many transitions over the last several decades. The goal of this study was to quantify habitat change over a seventy year period using historical black and white photography from 1940. Using present NAIP imagery from the USDA, habitat structure was estimated by using geo-statistics, and second order statistics, from a co-occurrence matrix, to characterize texture for habitat classification. Percent land cover was then calculated to determine overall land cover change over a seventy year period. The geostatistic of the horizontal spectral variation (CV) of image textures was used to estimate habitat structure using a multi scale approach if any characteristics of habitat texture could be delineated from CV histograms. The classification met with a result of an 80% habitat map of Horn Island ca. 1940, at 21x21 window size proving, that CV can be used successfully to classify text of historical black and white imagery. It was, also proven that CV can be used to characterize relative patch size for slash pine woodland habitat types, but not for habitats with smaller horizontal variations (i.e., marsh, and dune herbland)
    • …
    corecore