15,056 research outputs found

    A characterization of covering equivalence

    Full text link
    Let A={a_s(mod n_s)}_{s=1}^k and B={b_t(mod m_t)}_{t=1}^l be two systems of residue classes. If |{1\le s\le k: x=a_s (mod n_s)}| and |{1\le t\le l: x=b_t (mod m_t)}| are equal for all integers x, then A and B are said to be covering equivalent. In this paper we characterize the covering equivalence in a simple and new way. Using the characterization we partially confirm a conjecture of R. L. Graham and K. O'Bryant

    The Chang-Los-Suszko Theorem in a Topological Setting

    Get PDF
    The Chang-Łoś-Suszko theorem of first-order model theory characterizes universal-existential classes of models as just those elementary classes that are closed under unions of chains. This theorem can then be used to equate two model-theoretic closure conditions for elementary classes; namely unions of chains and existential substructures. In the present paper we prove a topological analogue and indicate some applications

    Fast Generation of Random Spanning Trees and the Effective Resistance Metric

    Full text link
    We present a new algorithm for generating a uniformly random spanning tree in an undirected graph. Our algorithm samples such a tree in expected O~(m4/3)\tilde{O}(m^{4/3}) time. This improves over the best previously known bound of min(O~(mn),O(nω))\min(\tilde{O}(m\sqrt{n}),O(n^{\omega})) -- that follows from the work of Kelner and M\k{a}dry [FOCS'09] and of Colbourn et al. [J. Algorithms'96] -- whenever the input graph is sufficiently sparse. At a high level, our result stems from carefully exploiting the interplay of random spanning trees, random walks, and the notion of effective resistance, as well as from devising a way to algorithmically relate these concepts to the combinatorial structure of the graph. This involves, in particular, establishing a new connection between the effective resistance metric and the cut structure of the underlying graph

    Coalgebraic Trace Semantics for Continuous Probabilistic Transition Systems

    Full text link
    Coalgebras in a Kleisli category yield a generic definition of trace semantics for various types of labelled transition systems. In this paper we apply this generic theory to generative probabilistic transition systems, short PTS, with arbitrary (possibly uncountable) state spaces. We consider the sub-probability monad and the probability monad (Giry monad) on the category of measurable spaces and measurable functions. Our main contribution is that the existence of a final coalgebra in the Kleisli category of these monads is closely connected to the measure-theoretic extension theorem for sigma-finite pre-measures. In fact, we obtain a practical definition of the trace measure for both finite and infinite traces of PTS that subsumes a well-known result for discrete probabilistic transition systems. Finally we consider two example systems with uncountable state spaces and apply our theory to calculate their trace measures
    corecore