87 research outputs found

    Analysis of path following and obstacle avoidance for multiple wheeled robots in a shared workspace

    Get PDF
    The article presents the experimental evaluation of an integrated approach for path following and obstacle avoidance, implemented on wheeled robots. Wheeled robots are widely used in many different contexts, and they are usually required to operate in partial or total autonomy: in a wide range of situations, having the capability to follow a predetermined path and avoiding unexpected obstacles is extremely relevant. The basic requirement for an appropriate collision avoidance strategy is to sense or detect obstacles and make proper decisions when the obstacles are nearby. According to this rationale, the approach is based on the definition of the path to be followed as a curve on the plane expressed in its implicit form f(x, y) = 0, which is fed to a feedback controller for path following. Obstacles are modeled through Gaussian functions that modify the original function, generating a resulting safe path which - once again - is a curve on the plane expressed as f\u2032(x, y) = 0: the deformed path can be fed to the same feedback controller, thus guaranteeing convergence to the path while avoiding all obstacles. The features and performance of the proposed algorithm are confirmed by experiments in a crowded area with multiple unicycle-like robots and moving persons

    Sensor Network Based Collision-Free Navigation and Map Building for Mobile Robots

    Full text link
    Safe robot navigation is a fundamental research field for autonomous robots including ground mobile robots and flying robots. The primary objective of a safe robot navigation algorithm is to guide an autonomous robot from its initial position to a target or along a desired path with obstacle avoidance. With the development of information technology and sensor technology, the implementations combining robotics with sensor network are focused on in the recent researches. One of the relevant implementations is the sensor network based robot navigation. Moreover, another important navigation problem of robotics is safe area search and map building. In this report, a global collision-free path planning algorithm for ground mobile robots in dynamic environments is presented firstly. Considering the advantages of sensor network, the presented path planning algorithm is developed to a sensor network based navigation algorithm for ground mobile robots. The 2D range finder sensor network is used in the presented method to detect static and dynamic obstacles. The sensor network can guide each ground mobile robot in the detected safe area to the target. Furthermore, the presented navigation algorithm is extended into 3D environments. With the measurements of the sensor network, any flying robot in the workspace is navigated by the presented algorithm from the initial position to the target. Moreover, in this report, another navigation problem, safe area search and map building for ground mobile robot, is studied and two algorithms are presented. In the first presented method, we consider a ground mobile robot equipped with a 2D range finder sensor searching a bounded 2D area without any collision and building a complete 2D map of the area. Furthermore, the first presented map building algorithm is extended to another algorithm for 3D map building

    An Approach for Multi-Robot Opportunistic Coexistence in Shared Space

    Get PDF
    This thesis considers a situation in which multiple robots operate in the same environment towards the achievement of different tasks. In this situation, please consider that not only the tasks, but also the robots themselves are likely be heterogeneous, i.e., different from each other in their morphology, dynamics, sensors, capabilities, etc. As an example, think about a "smart hotel": small wheeled robots are likely to be devoted to cleaning floors, whereas a humanoid robot may be devoted to social interaction, e.g., welcoming guests and providing relevant information to them upon request. Under these conditions, robots are required not only to co-exist, but also to coordinate their activity if we want them to exhibit a coherent and effective behavior: this may range from mutual avoidance to avoid collisions, to a more explicit coordinated behavior, e.g., task assignment or cooperative localization. The issues above have been deeply investigated in the Literature. Among the topics that may play a crucial role to design a successful system, this thesis focuses on the following ones: (i) An integrated approach for path following and obstacle avoidance is applied to unicycle type robots, by extending an existing algorithm [1] initially developed for the single robot case to the multi-robot domain. The approach is based on the definition of the path to be followed as a curve f (x;y) in space, while obstacles are modeled as Gaussian functions that modify the original function, generating a resulting safe path. The attractiveness of this methodology which makes it look very simple, is that it neither requires the computation of a projection of the robot position on the path, nor does it need to consider a moving virtual target to be tracked. The performance of the proposed approach is analyzed by means of a series of experiments performed in dynamic environments with unicycle-type robots by integrating and determining the position of robot using odometry and in Motion capturing environment. (ii) We investigate the problem of multi-robot cooperative localization in dynamic environments. Specifically, we propose an approach where wheeled robots are localized using the monocular camera embedded in the head of a Pepper humanoid robot, to the end of minimizing deviations from their paths and avoiding each other during navigation tasks. Indeed, position estimation requires obtaining a linear relationship between points in the image and points in the world frame: to this end, an Inverse Perspective mapping (IPM) approach has been adopted to transform the acquired image into a bird eye view of the environment. The scenario is made more complex by the fact that Pepper\u2019s head is moving dynamically while tracking the wheeled robots, which requires to consider a different IPM transformation matrix whenever the attitude (Pitch and Yaw) of the camera changes. Finally, the IPM position estimate returned by Pepper is merged with the estimate returned by the odometry of the wheeled robots through an Extened Kalman Filter. Experiments are shown with multiple robots moving along different paths in a shared space, by avoiding each other without onboard sensors, i.e., by relying only on mutual positioning information. Software for implementing the theoretical models described above have been developed in ROS, and validated by performing real experiments with two types of robots, namely: (i) a unicycle wheeled Roomba robot(commercially available all over the world), (ii) Pepper Humanoid robot (commercially available in Japan and B2B model in Europe)

    High-Dimensional Motion Planning and Learning Under Uncertain Conditions

    Get PDF
    Many existing path planning methods do not adequately account for uncertainty. Without uncertainty these existing techniques work well, but in real world environments they struggle due to inaccurate sensor models, arbitrarily moving obstacles, and uncertain action consequences. For example, picking up and storing childrens toys is a simple task for humans. Yet, for a robotic household robot the task can be daunting. The room must be modeled with sensors, which may or may not detect all the strewn toys. The robot must be able to detect and avoid the child who may be moving the very toys that the robot is tasked with cleaning. Finally, if the robot missteps and places a foot on a toy, it must be able to compensate for the unexpected consequences of its actions. This example demonstrates that even simple human tasks are fraught with uncertainties that must be accounted for in robotic path planning algorithms. This work presents the first steps towards migrating sampling-based path planning methods to real world environments by addressing three different types of uncertainty: (1) model uncertainty, (2) spatio-temporal obstacle uncertainty (moving obstacles) and (3) action consequence uncertainty. Uncertainty is encoded directly into path planning through a data structure in order to successfully and efficiently identify safe robot paths in sensed environments with noise. This encoding produces comparable clearance paths to other planning methods which are a known for high clearance, but at an order of magnitude less computational cost. It also shows that formal control theory methods combined with path planning provides a technique that has a 95% collision-free navigation rate with 300 moving obstacles. Finally, it demonstrates that reinforcement learning can be combined with planning data structures to autonomously learn motion controls of a seven degree of freedom robot despite a low computational cost despite the number of dimensions

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    Navigation and Control of Mobile Robots

    Full text link
    The rapid development of robotics has benefited by more and more people putting their attention to it. In the 1920s, ‘Robota’, a similar concept, was first known to the world. It is proposed in Karel Capek’ s drama, Rossum’ s Universal Robots (RUR). From then on, numbers of automatic machines were created all over the world, which are known as the robots of the early periods. Gradually, the demand for robots is growing for the purpose of fulfilling tasks instead of humans. From industrial uses, to the military, to education and entertainment, di↵erent kinds of robots began to serve humans in various scenarios. Based on this, how to control the robot better is becoming a hot topic. For the topic of navigating and controlling mobile robots, number of related problems have been carried out. Obstacle avoidance, path planning, cooperative work of multi-robots. In this thesis, we focus on the first two problems, and mention the last one as a future direction in the last part. For obstacle avoidance, we proposed algorithms for both 2D planar environ- ments and 3D space environments. The example cases we raise are those that need to be addressed but have always been ignored. To be specific, the motion of the obstacles are not fixed, the shape of the obstacles are changeable, and the sensors that could be deployed for underwater environments are limited. We even put those problems together to solve them. The methods we proposed are based on the biologically inspired algorithm and Back Propagation Neural network (BPNN). In addition, we put e↵orts into trajectory planning for robots. The two scenarios we set are self-driving cars on the road and reconnaissance and surveillance of drones. The methods we deployed are the Convolutional Neural Network (CNN) method and the two-phase strategy, respectively. When we proposed the strategies, we gave a detailed description of the robot systems, the proposed algorithms. We showed the performance with simulation results to demonstrate the solutions proposed are feasible. For future expectations, there are some possible directions. When applying traditional navigation algorithms, for example, biologically inspired algorithms, we have to pay attention to the limitations of the environment. However, high-tech algorithms sometimes are not computationally friendly. How to combine them together so as to fulfill the tasks perfectly while the computational e ciency is not too high is a worthy topic. In addition, extending the obstacle avoidance al- gorithms to more competitive situations, such as applying to autonomous UAVs, is also being considered. Moreover, for cooperation among multi robots, which could be regarded as Network Control System (NCS), the issues, such as how to complete their respective tasks, how to choose the optimal routes for them are worth attention by researchers. All in all, there is still a long way to go for the development of navigation and control of mobile robots. Despite this, we believe we do not need to wait for too long time to see the revolution of robots
    • …
    corecore