1,006 research outputs found

    Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    Get PDF
    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification

    Development and characterisation of a novel LDMOS macro-model for smart power applications

    Get PDF

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    New Processes and Technologies to Reduce the Low‐Frequency Noise of Digital and Analog Circuits

    Get PDF
    The chapter is intended to provide the reader with means to reduce low‐frequency noise in Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET). It is demonstrated that low‐resistivity source and drain electrodes can greatly lower the low‐frequency noise level by suppressing their contribution to the total noise. Furthermore, new plasma processes having the advantages to work at low electron temperature can achieve a further reduction, thanks to the fabrication of a better gate oxide and to a reduction of damages generally induced by conventional plasma processes. Reducing the impact of the traps on the carrier flowing inside the channel by burying the channel can also achieve a reduction of the noise level, but unfortunately at the cost of a degradation of the electrical performances. Finally, the noise analysis of the low‐frequency noise in accumulation‐mode MOSFETs showed that these newly developed devices have a lower noise level than conventional structures, which, in addition to their superiority in term of electrical performances, establishes them as a serious platform for the next Complementary Metal-Oxide-Semiconductor Field-Effect-Transistor (CMOS) technology

    Gas Sensor Array with Broad Applicability

    Get PDF

    Nano-scale TG-FinFET: Simulation and Analysis

    Get PDF
    Transistor has been designed and fabricated in the same way since its invention more than four decades ago enabling exponential shrinking in the channel length. However, hitting fundamental limits imposed the need for introducing disruptive technology to take over. FinFET - 3-D transistor - has been emerged as the first successor to MOSFET to continue the technology scaling roadmap. In this thesis, scaling of nano-meter FinFET has been investigated on both the device and circuit levels. The studies, primarily, consider FinFET in its tri-gate (TG) structure. On the device level, first, the main TCAD models used in simulating electron transport are benchmarked against the most accurate results on the semi-classical level using Monte Carlo techniques. Different models and modifications are investigated in a trial to extend one of the conventional models to the nano-scale simulations. Second, a numerical study for scaling TG-FinFET according to the most recent International Technology Roadmap of Semiconductors is carried out by means of quantum corrected 3-D Monte Carlo simulations in the ballistic and quasi-ballistic regimes, to assess its ultimate performance and scaling behavior for the next generations. Ballisticity ratio (BR) is extracted and discussed over different channel lengths. The electron velocity along the channel is analyzed showing the physical significance of the off-equilibrium transport with scaling the channel length. On the circuit level, first, the impact of FinFET scaling on basic circuit blocks is investigated based on the PTM models. 256-bit (6T) SRAM is evaluated for channel lengths of 20nm down to 7nm showing the scaling trends of basic performance metrics. In addition, the impact of VT variations on the delay, power, and stability is reported considering die-to-die variations. Second, we move to another peer-technology which is 28nm FD-SOI as a comparative study, keeping the SRAM cell as the test block, more advanced study is carried out considering the cell‘s stability and the evolution from dynamic to static metrics

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    corecore