82 research outputs found

    Approximation Resistant Predicates From Pairwise Independence

    Full text link
    We study the approximability of predicates on kk variables from a domain [q][q], and give a new sufficient condition for such predicates to be approximation resistant under the Unique Games Conjecture. Specifically, we show that a predicate PP is approximation resistant if there exists a balanced pairwise independent distribution over [q]k[q]^k whose support is contained in the set of satisfying assignments to PP

    Approximating solution structure of the Weighted Sentence Alignment problem

    Full text link
    We study the complexity of approximating solution structure of the bijective weighted sentence alignment problem of DeNero and Klein (2008). In particular, we consider the complexity of finding an alignment that has a significant overlap with an optimal alignment. We discuss ways of representing the solution for the general weighted sentence alignment as well as phrases-to-words alignment problem, and show that computing a string which agrees with the optimal sentence partition on more than half (plus an arbitrarily small polynomial fraction) positions for the phrases-to-words alignment is NP-hard. For the general weighted sentence alignment we obtain such bound from the agreement on a little over 2/3 of the bits. Additionally, we generalize the Hamming distance approximation of a solution structure to approximating it with respect to the edit distance metric, obtaining similar lower bounds

    Fixed-Parameter Approximability of Boolean MinCSPs

    Get PDF
    The minimum unsatisfiability version of a constraint satisfaction problem (CSP) asks for an assignment where the number of unsatisfied constraints is minimum possible, or equivalently, asks for a minimum-size set of constraints whose deletion makes the instance satisfiable. For a finite set Gamma of constraints, we denote by CSP(Gamma) the restriction of the problem where each constraint is from Gamma. The polynomial-time solvability and the polynomial-time approximability of CSP(Gamma) were fully characterized by [Khanna et al. SICOMP 2000]. Here we study the fixed-parameter (FP-) approximability of the problem: given an instance and an integer k, one has to find a solution of size at most g(k) in time f(k)n^{O(1)} if a solution of size at most k exists. We especially focus on the case of constant-factor FP-approximability. Our main result classifies each finite constraint language Gamma into one of three classes: (1) CSP(Gamma) has a constant-factor FP-approximation; (2) CSP(Gamma) has a (constant-factor) FP-approximation if and only if Nearest Codeword has a (constant-factor) FP-approximation; (3) CSP(Gamma) has no FP-approximation, unless FPT=W[P]. We show that problems in the second class do not have constant-factor FP-approximations if both the Exponential-Time Hypothesis (ETH) and the Linear PCP Conjecture (LPC) hold. We also show that such an approximation would imply the existence of an FP-approximation for the k-Densest Subgraph problem with ratio 1-epsilon for any epsilon>0

    A Space-Saving Approximation Algorithm for Grammar-Based Compression

    Get PDF

    Augmenting Graphs to Minimize the Radius

    Get PDF
    We study the problem of augmenting a metric graph by adding k edges while minimizing the radius of the augmented graph. We give a simple 3-approximation algorithm and show that there is no polynomial-time (5/3-?)-approximation algorithm, for any ? > 0, unless P = NP. We also give two exact algorithms for the special case when the input graph is a tree, one of which is generalized to handle metric graphs with bounded treewidth

    Temporal vertex cover with a sliding time window.

    Get PDF
    Modern, inherently dynamic systems are usually characterized by a network structure which is subject to discrete changes over time. Given a static underlying graph, a temporal graph can be represented via an assignment of a set of integer time-labels to every edge, indicating the discrete time steps when this edge is active. While most of the recent theoretical research on temporal graphs focused on temporal paths and other “path-related” temporal notions, only few attempts have been made to investigate “non-path” temporal problems. In this paper we introduce and study two natural temporal extensions of the classical problem VERTEX COVER. We present a thorough investigation of the computational complexity and approximability of these two temporal covering problems. We provide strong hardness results, complemented by approximation and exact algorithms. Some of our algorithms are polynomial-time, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH) and other plausible complexity assumptions

    Towards an efficient approximability for the Euclidean capacitated vehicle routing problem with time windows and multiple depots

    Full text link
    We consider the Euclidean Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). For the long time, approximability of this well-known problem in the class of algorithms with theoretical guarantees was poorly studied. This year, for the case of a single depot, we proposed two approximation algorithms, which are the Efficient Polynomial Time Approximation Schemes (EPTAS) for any fixed given capacity q and the number p of mutually disjunctive time windows. The former scheme extends the celebrated approach proposed by M. Haimovich and A. Rinnooy Kan and allows the evident parallelization, while the latter one has an improved time complexity bound and the enlarged domain in terms q = q(n) and p = p(n), where it retains polynomial time complexity. In this paper, we announce an extension of these results to the case of multiple depots. So, the first scheme is also EPTAS for any fixed parameters q, p, and m, where m is the number of depots, and remains PTAS for q = o(log log n) and mp = o(log log n). In other turn, the second one is a PTAS for p3q4 = O(log n) and (pq)2 log m = O(log n). © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.Russian Foundation for Basic Research, RFBR: 17-08-01385, 19-07-01243Michaeffi Khachay was supported by the Russian Foundation for Basic Research, grants no. 17-08-01385 and 19-07-01243
    corecore