2,154 research outputs found

    Model reduction of biochemical reactions networks by tropical analysis methods

    Full text link
    We discuss a method of approximate model reduction for networks of biochemical reactions. This method can be applied to networks with polynomial or rational reaction rates and whose parameters are given by their orders of magnitude. In order to obtain reduced models we solve the problem of tropical equilibration that is a system of equations in max-plus algebra. In the case of networks with nonlinear fast cycles we have to solve the problem of tropical equilibration at least twice, once for the initial system and a second time for an extended system obtained by adding to the initial system the differential equations satisfied by the conservation laws of the fast subsystem. The two steps can be reiterated until the fast subsystem has no conservation laws different from the ones of the full model. Our method can be used for formal model reduction in computational systems biology

    Evaluating Resilience of Electricity Distribution Networks via A Modification of Generalized Benders Decomposition Method

    Full text link
    This paper presents a computational approach to evaluate the resilience of electricity Distribution Networks (DNs) to cyber-physical failures. In our model, we consider an attacker who targets multiple DN components to maximize the loss of the DN operator. We consider two types of operator response: (i) Coordinated emergency response; (ii) Uncoordinated autonomous disconnects, which may lead to cascading failures. To evaluate resilience under response (i), we solve a Bilevel Mixed-Integer Second-Order Cone Program which is computationally challenging due to mixed-integer variables in the inner problem and non-convex constraints. Our solution approach is based on the Generalized Benders Decomposition method, which achieves a reasonable tradeoff between computational time and solution accuracy. Our approach involves modifying the Benders cut based on structural insights on power flow over radial DNs. We evaluate DN resilience under response (ii) by sequentially computing autonomous component disconnects due to operating bound violations resulting from the initial attack and the potential cascading failures. Our approach helps estimate the gain in resilience under response (i), relative to (ii)

    Reducing Electricity Demand Charge for Data Centers with Partial Execution

    Full text link
    Data centers consume a large amount of energy and incur substantial electricity cost. In this paper, we study the familiar problem of reducing data center energy cost with two new perspectives. First, we find, through an empirical study of contracts from electric utilities powering Google data centers, that demand charge per kW for the maximum power used is a major component of the total cost. Second, many services such as Web search tolerate partial execution of the requests because the response quality is a concave function of processing time. Data from Microsoft Bing search engine confirms this observation. We propose a simple idea of using partial execution to reduce the peak power demand and energy cost of data centers. We systematically study the problem of scheduling partial execution with stringent SLAs on response quality. For a single data center, we derive an optimal algorithm to solve the workload scheduling problem. In the case of multiple geo-distributed data centers, the demand of each data center is controlled by the request routing algorithm, which makes the problem much more involved. We decouple the two aspects, and develop a distributed optimization algorithm to solve the large-scale request routing problem. Trace-driven simulations show that partial execution reduces cost by 3%−−10.5%3\%--10.5\% for one data center, and by 15.5%15.5\% for geo-distributed data centers together with request routing.Comment: 12 page

    Non-convex Optimization for Machine Learning

    Full text link
    A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.Comment: The official publication is available from now publishers via http://dx.doi.org/10.1561/220000005

    Decentralised Optimisation and Control in Electrical Power Systems

    Get PDF
    Emerging smart-grid-enabling technologies will allow an unprecedented degree of observability and control at all levels in a power system. Combined with flexible demand devices (e.g. electric vehicles or various household appliances), increased distributed generation, and the potential development of small scale distributed storage, they could allow procuring energy at minimum cost and environmental impact. That however presupposes real-time coordination of demand of individual households and industries down at the distribution level, with generation and renewables at the transmission level. In turn this implies the need to solve energy management problems of a much larger scale compared to the one we currently solve today. This of course raises significant computational and communications challenges. The need for an answer to these problems is reflected in today’s power systems literature where a significant number of papers cover subjects such as generation and/or demand management at both transmission and/or distribution, electric vehicle charging, voltage control devices setting, etc. The methods used are centralized or decentralized, handling continuous and/or discrete controls, approximate or exact, and incorporate a wide range of problem formulations. All these papers tackle aspects of the same problem, i.e. the close to real-time determination of operating set-points for all controllable devices available in a power system. Yet, a consensus regarding the associated formulation and time-scale of application has not been reached. Of course, given the large scale of the problem, decentralization is unavoidably part of the solution. In this work we explore the existing and developing trends in energy management and place them into perspective through a complete framework that allows optimizing energy usage at all levels in a power system

    Numerical Strategies for Mixed-Integer Optimization of Power-Split and Gear Selection in Hybrid Electric Vehicles

    Get PDF
    This paper presents numerical strategies for a computationally efficient energy management system that co-optimizes the power split and gear selection of a hybrid electric vehicle (HEV). We formulate a mixed-integer optimal control problem (MIOCP) that is transcribed using multiple-shooting into a mixed-integer nonlinear program (MINLP) and then solved by nonlinear model predictive control. We present two different numerical strategies, a Selective Relaxation Approach (SRA), which decomposes the MINLP into several subproblems, and a Round-n-Search Approach (RSA), which is an enhancement of the known ‘relax-n-round’ strategy. Subsequently, the resulting algorithmic performance and optimality of the solution of the proposed strategies are analyzed against two benchmark strategies; one using rule-based gear selection, which is typically used in production vehicles, and the other using dynamic programming (DP), which provides a global optimum of a quantized version of the MINLP. The results show that both SRA and RSA enable about\ua03.6%\ua0cost reduction compared to the rule-based strategy, while still being within\ua01%\ua0of the DP solution. Moreover, for the case studied RSA takes about\ua035%\ua0less mean computation time compared to SRA, while both SRA and RSA being about\ua099\ua0times faster than DP. Furthermore, both SRA and RSA were able to overcome the infeasibilities encountered by a typical rounding strategy under different drive cycles. The results show the computational benefit of the proposed strategies, as well as the energy saving possibility of co-optimization strategies in which actuator dynamics are explicitly included
    • …
    corecore