98,832 research outputs found

    Distributed Detection of Cycles

    Full text link
    Distributed property testing in networks has been introduced by Brakerski and Patt-Shamir (2011), with the objective of detecting the presence of large dense sub-networks in a distributed manner. Recently, Censor-Hillel et al. (2016) have shown how to detect 3-cycles in a constant number of rounds by a distributed algorithm. In a follow up work, Fraigniaud et al. (2016) have shown how to detect 4-cycles in a constant number of rounds as well. However, the techniques in these latter works were shown not to generalize to larger cycles CkC_k with k≥5k\geq 5. In this paper, we completely settle the problem of cycle detection, by establishing the following result. For every k≥3k\geq 3, there exists a distributed property testing algorithm for CkC_k-freeness, performing in a constant number of rounds. All these results hold in the classical CONGEST model for distributed network computing. Our algorithm is 1-sided error. Its round-complexity is O(1/ϵ)O(1/\epsilon) where ϵ∈(0,1)\epsilon\in(0,1) is the property testing parameter measuring the gap between legal and illegal instances

    Characterizations of Pseudo-Codewords of LDPC Codes

    Get PDF
    An important property of high-performance, low complexity codes is the existence of highly efficient algorithms for their decoding. Many of the most efficient, recent graph-based algorithms, e.g. message passing algorithms and decoding based on linear programming, crucially depend on the efficient representation of a code in a graphical model. In order to understand the performance of these algorithms, we argue for the characterization of codes in terms of a so called fundamental cone in Euclidean space which is a function of a given parity check matrix of a code, rather than of the code itself. We give a number of properties of this fundamental cone derived from its connection to unramified covers of the graphical models on which the decoding algorithms operate. For the class of cycle codes, these developments naturally lead to a characterization of the fundamental polytope as the Newton polytope of the Hashimoto edge zeta function of the underlying graph.Comment: Submitted, August 200
    • …
    corecore