1,077 research outputs found

    Data compression for full motion video transmission

    Get PDF
    Clearly transmission of visual information will be a major, if not dominant, factor in determining the requirements for, and assessing the performance of the Space Exploration Initiative (SEI) communications systems. Projected image/video requirements which are currently anticipated for SEI mission scenarios are presented. Based on this information and projected link performance figures, the image/video data compression requirements which would allow link closure are identified. Finally several approaches which could satisfy some of the compression requirements are presented and possible future approaches which show promise for more substantial compression performance improvement are discussed

    Investigation of Different Video Compression Schemes Using Neural Networks

    Get PDF
    Image/Video compression has great significance in the communication of motion pictures and still images. The need for compression has resulted in the development of various techniques including transform coding, vector quantization and neural networks. this thesis neural network based methods are investigated to achieve good compression ratios while maintaining the image quality. Parts of this investigation include motion detection, and weight retraining. An adaptive technique is employed to improve the video frame quality for a given compression ratio by frequently updating the weights obtained from training. More specifically, weight retraining is performed only when the error exceeds a given threshold value. Image quality is measured objectively, using the peak signal-to-noise ratio versus performance measure. Results show the improved performance of the proposed architecture compared to existing approaches. The proposed method is implemented in MATLAB and the results obtained such as compression ratio versus signalto- noise ratio are presented

    Hybrid compression of video with graphics in DTV communication systems

    Get PDF
    Advanced broadcast manipulation of TV sequences and enhanced user interfaces for TV systems have resulted in an increased amount of pre- and post-editing of video sequences, where graphical information is inserted. However, in the current broadcasting chain, there are no provisions for enabling an efficient transmission/storage of these mixed video and graphics signals and, at this emerging stage of DTV systems, introducing new standards is not desired. Nevertheless, in the professional video communication chain between content provider and broadcaster and locally, in the DTV receiver, proprietary video-graphics compression schemes can be used to enable more efficient transmission/storage of mixed video and graphics signals. For example, in the DTV receiver case this will lead to a significant memory-cost reduction. To preserve a high overall image quality, the video and graphics data require independent coding systems, matched with their specific visual and statistical properties. We introduce various efficient algorithms that support both the lossless (contour, runlength and arithmetic coding) and the lossy (block predictive coding) compression of graphics data. If the graphics data are a-priori mixed with video and the graphics position is unknown at compression time, an accurate detection mechanism is applied to distinguish the two signals, such that independent coding algorithms can be employed for each data-type. In the DTV memory-reduction scenario, an overall bit-rate control completes the system, ensuring a fixed compression factor of 2-3 per frame without sacrificing the quality of the graphic

    Compression of image sequences in interactive medical teleconsultations

    Get PDF
    Interactive medical teleconsultations are an important tool in the modern medical practice. Their applications include remote diagnostics, conferences, workshops and classes for students. In many cases standard medium or low-end machines are employed and the teleconsultation systems must be able to provide high quality of user experience with very limited resources. Particularly problematic are large datasets, consisting of image sequences, which need to be accessed fluently. The main issue is insufficient internal memory, therefore proper compression methods are crucial. However, a scenario where image sequences are kept in a compressed format in the internal memory and decompressed on-the-fly when displayed, is difficult to implement due to performance issues. In this paper we present methods for both lossy and lossless compression of medical image sequences, which require only compatibility with Pixel Shader 2.0 standard, which is present even on relatively old, low-end devices. Based on the evaluation of quality, size reduction and performance, the methods are proved to be suitable and beneficial for the medical teleconsultation applications
    corecore