3,513 research outputs found

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    Global design of analog cells using statistical optimization techniques

    Get PDF
    We present a methodology for automated sizing of analog cells using statistical optimization in a simulation based approach. This methodology enables us to design complex analog cells from scratch within reasonable CPU time. Three different specification types are covered: strong constraints on the electrical performance of the cells, weak constraints on this performance, and design objectives. A mathematical cost function is proposed and a bunch of heuristics is given to increase accuracy and reduce CPU time to minimize the cost function. A technique is also presented to yield designs with reduced variability in the performance parameters, under random variations of the transistor technological parameters. Several CMOS analog cells with complexity levels up to 48 transistors are designed for illustration. Measurements from fabricated prototypes demonstrate the suitability of the proposed methodology

    PLANAR CMOS AND MULTIGATE TRANSISTORS BASED WIDE-BAND OTA BUFFER AMPLIFIERS FOR HEAVY RESISTANCE LOAD

    Get PDF
    Analog buffer amplifier configurations capable of driving heavy resistive load using different operational transconductance amplifier (OTA) are presented in this paper. The OTA CMOS buffer configurations are designed using 0.18 µm SCL technology library in Cadence Virtuoso tool and multigate transistor OTA buffer in TCAD Sentaurus tool. CMOS OTA buffer configuration using simple OTA outperform the OTA buffer circuits using other OTAs in terms of power dissipation and stability. Measured results show that the OTA buffer circuit works well for resistive load below 100 Ω. The gain tuning of up to 5 V/V is achieved with RL equal to 50 Ω, output swing of 1 V. OTA buffer configuration implemented using multigate transistor with resistive load below 1 kΩ exhibits a bandwidth around 5 GHz and tunable gain up to 5 V/V

    Geometrically-constrained, parasitic-aware synthesis of analog ICs

    Get PDF
    In order to speed up the design process of analog ICs, iterations between different design stages should be avoided as much as possible. More specifically, spins between electrical and physical synthesis should be reduced for this is a very time-consuming task: if circuit performance including layout-induced degradations proves unacceptable, a re-design cycle must be entered, and electrical, physical, or both synthesis processes, would have to be repeated. It is also worth noting that if geometric optimization (e.g., area minimization) is undertaken after electrical synthesis, it may add up as another source of unexpected degradation of the circuit performance due to the impact of the geometric variables (e.g., transistor folds) on the device and the routing parasitic values. This awkward scenario is caused by the complete separation of said electrical and physical synthesis, a design practice commonly followed so far. Parasitic-aware synthesis, consisting in including parasitic estimates to the circuit netlist directly during electrical synthesis, has been proposed as solution. While most of the reported contributions either tackle parasitic-aware synthesis without paying special attention to geometric optimization or approach both issues only partially, this paper addresses the problem in a unified way. In what has been called layout-aware electrical synthesis, a simulation-based optimization algorithm explores the design space with geometric variables constrained to meet certain user-defined goals, which provides reliable estimates of layout-induced parasitics at each iteration, and, thereby, accurate evaluation of the circuit ultimate performance. This technique, demonstrated here through several design examples, requires knowing layout details beforehand; to facilitate this, procedural layout generation is used as physical synthesis approach due to its rapidness and ability to capture analog layout know-how.Ministerio de Educación y Ciencia TEC2004-0175

    Aging-Aware Design Methods for Reliable Analog Integrated Circuits using Operating Point-Dependent Degradation

    Get PDF
    The focus of this thesis is on the development and implementation of aging-aware design methods, which are suitable to satisfy current needs of analog circuit design. Based on the well known \gm/\ID sizing methodology, an innovative tool-assisted aging-aware design approach is proposed, which is able to estimate shifts in circuit characteristics using mostly hand calculation schemes. The developed concept of an operating point-dependent degradation leads to the definition of an aging-aware sensitivity, which is compared to currently available degradation simulation flows and proves to be efficient in the estimation of circuit degradation. Using the aging-aware sensitivity, several analog circuits are investigated and optimized towards higher reliability. Finally, results are presented for numerous target specifications

    Photonics design tool for advanced CMOS nodes

    Full text link
    Recently, the authors have demonstrated large-scale integrated systems with several million transistors and hundreds of photonic elements. Yielding such large-scale integrated systems requires a design-for-manufacture rigour that is embodied in the 10 000 to 50 000 design rules that these designs must comply within advanced complementary metal-oxide semiconductor manufacturing. Here, the authors present a photonic design automation tool which allows automatic generation of layouts without design-rule violations. This tool is written in SKILL, the native language of the mainstream electric design automation software, Cadence. This allows seamless integration of photonic and electronic design in a single environment. The tool leverages intuitive photonic layer definitions, allowing the designer to focus on the physical properties rather than on technology-dependent details. For the first time the authors present an algorithm for removal of design-rule violations from photonic layouts based on Manhattan discretisation, Boolean and sizing operations. This algorithm is not limited to the implementation in SKILL, and can in principle be implemented in any scripting language. Connectivity is achieved with software-defined waveguide ports and low-level procedures that enable auto-routing of waveguide connections.Comment: 5 pages, 10 figure

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    ANALYSIS OF MOS CURRENT MODE LOGIC (MCML) AND IMPLEMENTATION OF MCML STANDARD CELL LIBRARY FOR LOW-NOISE DIGITAL CIRCUIT DESIGN

    Get PDF
    MOS current mode logic (MCML) offers low noise digital circuits that reduce noise that can cripple analog components in mixed-signal integrated circuits, when compared to CMOS digital circuits. An MCML standard cell library was developed for the Cadence Virtuoso Integrated Circuit (IC) design software that gives IC designers the ability to design complex, low noise digital circuits for use in mixed-signal and noise sensitive systems at a high level of abstraction, allowing them to get superior products to market faster than competitors. The MCML standard cell library developed and presented here allows for fast development of mixed signal circuits by providing quiet digital building block gates that reduce the simultaneous switching noise (SSN) by an order of magnitude over conventional CMOS based designs [3]. This thesis project developed the following digital gates in MCML as a standard cell library for general-purpose low noise and very low noise applications: inverter, buffer, NAND, AND, NOR, OR, XOR, NXOR, 2:1 MUX, CMOS to MCML, MCML to CMOS, and double edge triggered flip-flop (DETFF)

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso
    corecore