7,821 research outputs found

    Non-negative mixtures

    Get PDF
    This is the author's accepted pre-print of the article, first published as M. D. Plumbley, A. Cichocki and R. Bro. Non-negative mixtures. In P. Comon and C. Jutten (Ed), Handbook of Blind Source Separation: Independent Component Analysis and Applications. Chapter 13, pp. 515-547. Academic Press, Feb 2010. ISBN 978-0-12-374726-6 DOI: 10.1016/B978-0-12-374726-6.00018-7file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:p\PlumbleyCichockiBro10-non-negative.pdf:PDF owner: markp timestamp: 2011.04.2

    Hyperspectral colon tissue cell classification

    Get PDF
    A novel algorithm to discriminate between normal and malignant tissue cells of the human colon is presented. The microscopic level images of human colon tissue cells were acquired using hyperspectral imaging technology at contiguous wavelength intervals of visible light. While hyperspectral imagery data provides a wealth of information, its large size normally means high computational processing complexity. Several methods exist to avoid the so-called curse of dimensionality and hence reduce the computational complexity. In this study, we experimented with Principal Component Analysis (PCA) and two modifications of Independent Component Analysis (ICA). In the first stage of the algorithm, the extracted components are used to separate four constituent parts of the colon tissue: nuclei, cytoplasm, lamina propria, and lumen. The segmentation is performed in an unsupervised fashion using the nearest centroid clustering algorithm. The segmented image is further used, in the second stage of the classification algorithm, to exploit the spatial relationship between the labeled constituent parts. Experimental results using supervised Support Vector Machines (SVM) classification based on multiscale morphological features reveal the discrimination between normal and malignant tissue cells with a reasonable degree of accuracy

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Subclass Discriminant Analysis of Morphological and Textural Features for HEp-2 Staining Pattern Classification

    Get PDF
    Classifying HEp-2 fluorescence patterns in Indirect Immunofluorescence (IIF) HEp-2 cell imaging is important for the differential diagnosis of autoimmune diseases. The current technique, based on human visual inspection, is time-consuming, subjective and dependent on the operator's experience. Automating this process may be a solution to these limitations, making IIF faster and more reliable. This work proposes a classification approach based on Subclass Discriminant Analysis (SDA), a dimensionality reduction technique that provides an effective representation of the cells in the feature space, suitably coping with the high within-class variance typical of HEp-2 cell patterns. In order to generate an adequate characterization of the fluorescence patterns, we investigate the individual and combined contributions of several image attributes, showing that the integration of morphological, global and local textural features is the most suited for this purpose. The proposed approach provides an accuracy of the staining pattern classification of about 90%

    Invaded cluster algorithm for a tricritical point in a diluted Potts model

    Full text link
    The invaded cluster approach is extended to 2D Potts model with annealed vacancies by using the random-cluster representation. Geometrical arguments are used to propose the algorithm which converges to the tricritical point in the two-dimensional parameter space spanned by temperature and the chemical potential of vacancies. The tricritical point is identified as a simultaneous onset of the percolation of a Fortuin-Kasteleyn cluster and of a percolation of "geometrical disorder cluster". The location of the tricritical point and the concentration of vacancies for q = 1, 2, 3 are found to be in good agreement with the best known results. Scaling properties of the percolating scaling cluster and related critical exponents are also presented.Comment: 8 pages, 5 figure
    corecore