137 research outputs found

    Smart electric vehicle charging strategy in direct current microgrid

    Get PDF
    This thesis proposes novel electric vehicle (EV) charging strategies in DC microgrid (DCMG) for integrating network loads, EV charging/discharging and dispatchable generators (DGs) using droop control within DCMG. A novel two-stage optimization framework is deployed, which optimizes power flow in the network using droop control within DCMG and solves charging tasks with a modified Djistra algorithm. Charging tasks here are modeled as the shortest path problem considering system losses and battery degradation from the distribution system operator (DSO) and electric vehicles aggregator (EVA) respectively. Furthermore, a probabilistic distribution model is proposed to investigate the EV stochastic behaviours for a charging station including time-of-arrival (TOA), time-of-departure(TOD) and energy-to-be-charged (ETC) as well as the coupling characteristic between these parameters. Markov Chain Monte Carlo (MCMC) method is employed to establish a multi-dimension probability distribution for those load profiles and further tests show the scheme is suitable for decentralized computing of its low burn-in request, fast convergent and good parallel acceleration performance. Following this, a three-stage stochastic EV charging strategy is designed to plug the probabilistic distribution model into the optimization framework, which becomes the first stage of the framework. Subsequently, an optimal power flow (OPF) model in the DCMG is deployed where the previous deterministic model is deployed in the second stage which stage one and stage two are combined as a chance-constrained problem in stage three and solved as a random walk problem. Finally, this thesis investigates the value of EV integration in the DCMG. The results obtained show that with smart control of EV charging/discharging, not only EV charging requests can be satisfied, but also network performance like peak valley difference can be improved by ancillary services. Meanwhile, both system loss and battery degradation from DSO and EVA can be minimized.Open Acces

    Robust Voltage Vector-Controlled Three-Phase SAPF-based BPMVF and SVM for Power Quality Improvement

    Get PDF
    The multiplication of nonlinear loads leads to significant degradation of the energy quality, thus the interconnection network is subject to being polluted by the generation of harmonic components and reactive power, which causes a weakening efficiency, especially for the power factor. In three-phase systems, they can cause imbalances by causing excessive currents at the neutral. This research treats the operation of robust voltage-oriented control (VOC) for a shunt active power filter (SAPF). The main benefit of this technique is to guarantee a decoupled control of the active and reactive input currents, as well as the input reference voltage. To sustain the DC voltage, a robust PI-structure-based antiwindup is inserted to ensure active power control. Besides, a robust phase-locked loop (PLL)-based bandpass multivariable filter (BPMVF) is used to improve the network voltage quality. Furthermore, a space vector modulation (SVM) is designed to replace the conventional one. A sinusoidal network current and unitary power factor are achieved with fewer harmonics. The harmonics have been reduced from 27.98% to 1.55% which respects the IEEE 519-1992 standard. Expanded simulation results obtained from the transient and steady-state have demonstrated the high performance of the suggested control scheme

    A multi-port power conversion system for the more electric aircraft

    Get PDF
    In more electric aircraft (MEA) weight reduction and energy efficiency constitute the key figures. Additionally, the safety and continuity of operation of its electrical power distribution system (EPDS) is of critical importance. These sets of desired features are in disagreement with each other, because higher redundancy, needed to guarantee the safety of operation, implies additional weight. In fact, EPDS is usually divided into isolated sections, which need to be sized for the worst-case scenario. Several concepts of EPDS have been investigated, aiming at enabling the power exchange among separate sections, which allows better optimization for power and weight of the whole system. In this paper, an approach based on the widespread use of multi-port power converters for both DC/DC and DC/AC stages is proposed. System integration of these two is proposed as a multiport power conversion system (MPCS), which allows a ring power distribution while galvanic isolation is still maintained, even in fault conditions. Thus, redundancy of MEA is established by no significant weight increase. A machine design analysis shows how the segmented machine could offer superior performance to the traditional one with same weight. Simulation and experimental verifications show the system feasibility in both normal and fault operations

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself

    Three-level neutral point-clamped (NPC) traction inverter drive for electric vehicles

    Get PDF
    The motivation of this project was to develop a three level neutral point clamped (NPC) traction inverter for a permanent magnet synchronous machine drive. The three-level inverter helps to reduce the total inverter losses at higher switching frequencies, compared to a two-level inverter for electric vehicle applications. The three-level inverter has also more power switches compared to the two-level inverter. This helps to reduce the voltage stress across the switches and the machine winding. In addition, it also allows an increase in the DC-link voltage, which in turn helps to reduce the DC-link current, phase conductor size and the associated losses. Moreover, at higher DC-bus voltages the power switches will have lower thermal stress when compared to the 2-level. However, the NPC inverter topologies have an inherent problem of DC-link voltage balancing. In the initial part of this thesis, a novel space vector based DC-link voltage balancing strategy is proposed. This strategy can keep the two DC-link capacitor voltages balanced during transient changes in both speed and torque. The performance of the three-level inverter system is then compared with a two-level inverter based drive to validate its performance improvement. The results showed a significant reduction in total voltage and current harmonic distortions, reduced total inverter losses (by 2/3rd) and was even was able to keep the neutral point fluctuation low at all operating load power factor conditions. The second motivation of this thesis was to reduce the computational time in the real-time implementation of the control logic. For this purpose, a modified carrier and hybrid-carrier based PWM strategy was proposed, which also kept the DC-link capacitor voltages balanced. The modified carrier based strategy was able to reduce the switching losses compared to the conventional strategies, while the hybrid-carrier based strategy kept the advantages of both carrier and the space vector techniques. Finally, a performance comparison study was carried out to compare the total harmonic distortion, switching loss distribution, and total inverter loss of all the four proposed strategies
    • …
    corecore