726 research outputs found

    Turbo receivers for interleave-division multiple-access systems

    Get PDF
    In this paper several turbo receivers for Interleave-Division Multiple-Access (IDMA) systems will be discussed. The multiple access system model is presented first. The optimal, Maximum A Posteriori (MAP) algorithm, is then presented. It will be shown that the use of a precoding technique at the emitter side is applicable to IDMA systems. Several low complexity Multi-User Detector (MUD), based on the Gaussian approximation, will be next discussed. It will be shown that the MUD with Probabilistic Data Association (PDA) algorithm provides faster convergence of the turbo receiver. The discussed turbo receivers will be evaluated by means of Bit Error Rate (BER) simulations and EXtrinsic Information Transfer (EXIT) charts

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Asymptotic Performance of Linear Receivers in MIMO Fading Channels

    Full text link
    Linear receivers are an attractive low-complexity alternative to optimal processing for multi-antenna MIMO communications. In this paper we characterize the information-theoretic performance of MIMO linear receivers in two different asymptotic regimes. For fixed number of antennas, we investigate the limit of error probability in the high-SNR regime in terms of the Diversity-Multiplexing Tradeoff (DMT). Following this, we characterize the error probability for fixed SNR in the regime of large (but finite) number of antennas. As far as the DMT is concerned, we report a negative result: we show that both linear Zero-Forcing (ZF) and linear Minimum Mean-Square Error (MMSE) receivers achieve the same DMT, which is largely suboptimal even in the case where outer coding and decoding is performed across the antennas. We also provide an approximate quantitative analysis of the markedly different behavior of the MMSE and ZF receivers at finite rate and non-asymptotic SNR, and show that while the ZF receiver achieves poor diversity at any finite rate, the MMSE receiver error curve slope flattens out progressively, as the coding rate increases. When SNR is fixed and the number of antennas becomes large, we show that the mutual information at the output of a MMSE or ZF linear receiver has fluctuations that converge in distribution to a Gaussian random variable, whose mean and variance can be characterized in closed form. This analysis extends to the linear receiver case a well-known result previously obtained for the optimal receiver. Simulations reveal that the asymptotic analysis captures accurately the outage behavior of systems even with a moderate number of antennas.Comment: 48 pages, Submitted to IEEE Transactions on Information Theor

    Analysis of multiuser MIMO downlink networks using linear transmitter and receivers

    Get PDF
    In contrast to dirty-paper coding (DPC) which is largely information theoretic, this paper proposes a linear codec that can spatially multiplex the multiuser signals to realize the rich capacity of multiple-input multiple-output (MIMO) downlink broadcast (point-to-multipoint) channels when channel state information (CSI) is available at the transmitter. Assuming single-stream (or single-mode) communication for each user, we develop an iterative algorithm, which is stepwise optimal, to obtain the multiuser antenna weights accomplishing orthogonal space-division multiplexing (OSDM). The steady state solution has a straightforward interpretation and requires only maximal-ratio combiners (MRC) at the mobile stations to capture the optimized spatial modes. Our main contribution is that the proposed scheme can greatly reduce the processing complexity (at least by a factor of the number of base station antennas) while maintaining the same error performance when compared to a recently published OSDM method. Intensive computer simulations show that the proposed scheme promises to provide multiuser diversity in addition to user separation in the spatial domain so that both diversity and multiplexing can be obtained at the same time for multiuser scenario. © 2004 Hindawi Publishing Corporation.published_or_final_versio

    Application of Diversity Techniques for Multi User IDMA Communication System

    Get PDF
    In wireless communication, fading problem is mitigated with help of diversity techniques. This paper presents Maximal Ratio Combining (MRC) diversity approach to uproot the fading problem in interleave-division multiple-access (IDMA) scheme. The approach explains receiver diversity as well as transmits diversity analysis as 1:2 and 2:1 antenna system in fading environment, no. of antennas can be increased to improve diversity order. Random interleaver as well tree based interleaver has been taken for study. Significant improvements in performance of IDMA communication is observed with application of diversity techniques. Keywords: Random Interleaver, Tree Based Interleaver, MRC diversity, IDM

    Increasing Downlink Cellular Throughput with Limited Network MIMO Coordination

    Get PDF
    Single-user, multiuser, and network MIMO performance is evaluated for downlink cellular networks with 12 antennas per site, sectorization, universal frequency reuse, scheduled packet-data, and a dense population of stationary users. Compared to a single-user MIMO baseline system with 3 sectors per site, network MIMO coordination is found to increase throughput by a factor of 1.8 with intra-site coordination among antennas belonging to the same cell site. Intra-site coordination performs almost as well as a highly sectorized system with 12 sectors per site. Increasing the coordination cluster size from 1 to 7 sites increases the throughput gain factor to 2.5
    corecore