38,526 research outputs found

    Integration of multiple data sources to prioritize candidate genes using discounted rating system

    Get PDF
    Background: Identifying disease gene from a list of candidate genes is an important task in bioinformatics. The main strategy is to prioritize candidate genes based on their similarity to known disease genes. Most of existing gene prioritization methods access only one genomic data source, which is noisy and incomplete. Thus, there is a need for the integration of multiple data sources containing different information. Results: In this paper, we proposed a combination strategy, called discounted rating system (DRS). We performed leave one out cross validation to compare it with N-dimensional order statistics (NDOS) used in Endeavour. Results showed that the AUC (Area Under the Curve) values achieved by DRS were comparable with NDOS on most of the disease families. But DRS worked much faster than NDOS, especially when the number of data sources increases. When there are 100 candidate genes and 20 data sources, DRS works more than 180 times faster than NDOS. In the framework of DRS, we give different weights for different data sources. The weighted DRS achieved significantly higher AUC values than NDOS. Conclusion: The proposed DRS algorithm is a powerful and effective framework for candidate gene prioritization. If weights of different data sources are proper given, the DRS algorithm will perform better

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa
    • …
    corecore