5,139 research outputs found

    Linear Invariant Systems Theory for Signal Enhancement

    Get PDF
    This paper discusses a linear time invariant (LTI) systems approach to signal enhancement via projective subspace techniques. It provides closed form expressions for the frequency response of data adaptive finite impulse response eigenfilters. An illustrative example using speech enhancement is also presented.Este artigo apresenta a aplicação da teoria de sistemas lineares invariantes no tempo (LTI) na análise de técnicas de sub-espaço. A resposta em frequência dos filtros resultantes da decomposição em valores singulares é obtida aplicando as propriedades dos sistemas LTI

    Stereophonic noise reduction using a combined sliding subspace projection and adaptive signal enhancement

    Get PDF
    A novel stereophonic noise reduction method is proposed. This method is based upon a combination of a subspace approach realized in a sliding window operation and two-channel adaptive signal enhancing. The signal obtained from the signal subspace is used as the input signal to the adaptive signal enhancer for each channel, instead of noise, as in the ordinary adaptive noise canceling scheme. Simulation results based upon real stereophonic speech contaminated by noise components show that the proposed method gives improved enhancement quality in terms of both segmental gain and cepstral distance performance indices in comparison with conventional nonlinear spectral subtraction approaches

    Algorithm and architecture for simultaneous diagonalization of matrices applied to subspace-based speech enhancement

    Get PDF
    This thesis presents algorithm and architecture for simultaneous diagonalization of matrices. As an example, a subspace-based speech enhancement problem is considered, where in the covariance matrices of the speech and noise are diagonalized simultaneously. In order to compare the system performance of the proposed algorithm, objective measurements of speech enhancement is shown in terms of the signal to noise ratio and mean bark spectral distortion at various noise levels. In addition, an innovative subband analysis technique for subspace-based time-domain constrained speech enhancement technique is proposed. The proposed technique analyses the signal in its subbands to build accurate estimates of the covariance matrices of speech and noise, exploiting the inherent low varying characteristics of speech and noise signals in narrow bands. The subband approach also decreases the computation time by reducing the order of the matrices to be simultaneously diagonalized. Simulation results indicate that the proposed technique performs well under extreme low signal-to-noise-ratio conditions. Further, an architecture is proposed to implement the simultaneous diagonalization scheme. The architecture is implemented on an FPGA primarily to compare the performance measures on hardware and the feasibility of the speech enhancement algorithm in terms of resource utilization, throughput, etc. A Xilinx FPGA is targeted for implementation. FPGA resource utilization re-enforces on the practicability of the design. Also a projection of the design feasibility for an ASIC implementation in terms of transistor count only is include

    SSA of biomedical signals: A linear invariant systems approach

    Get PDF
    Singular spectrum analysis (SSA) is considered from a linear invariant systems perspective. In this terminology, the extracted components are considered as outputs of a linear invariant system which corresponds to finite impulse response (FIR) filters. The number of filters is determined by the embedding dimension.We propose to explicitly define the frequency response of each filter responsible for the selection of informative components. We also introduce a subspace distance measure for clustering subspace models. We illustrate the methodology by analyzing lectroencephalograms (EEG).FCT - PhD scholarship (SFRH/BD/28404/2006)FCT - PhD scholarship (SFRH/BD/48775/2008
    corecore