29 research outputs found

    Continuous Alternation: The Complexity of Pursuit in Continuous Domains

    Get PDF
    Complexity theory has used a game-theoretic notion, namely alternation, to great advantage in modeling parallelism and in obtaining lower bounds. The usual definition of alternation requires that transitions be made in discrete steps. The study of differential games is a classic area of optimal control, where there is continuous interaction and alternation between the players. Differential games capture many aspects of control theory and optimal control over continuous domains. In this paper, we define a generalization of the notion of alternation which applies to differential games, and which we call "continuous alternation." This approach allows us to obtain the first known complexity-theoretic results for open problems in differential games and optimal control. We concentrate our investigation on an important class of differential games, which we call polyhedral pursuit games. Pursuit games have application to many fundamental problems in autonomous robot control in the presence of an adversary. For example, this problem occurs in manufacturing environments with a single robot moving among a number of autonomous robots with unknown control programs, as well as in automatic automobile control, and collision control among aircraft and boats with unknown or adversary control. We show that in a three-dimensional pursuit game where each player's velocity is bounded (but there is no bound on acceleration), the pursuit game decision problem is hard for exponential time. This lower bound is somewhat surprising due to the sparse nature of the problem: there are only two moving objects (the players), each with only three degrees of freedom. It is also the first provably intractable result for any robotic problem with complete information; previous intractability results have relied on complexity-theoretic assumptions. Fortunately, we can counter our somewhat pessimistic lower bounds with polynomial time upper bounds for obtaining approximate solutions. In particular, we give polynomial time algorithms that approximately solve a very large class of pursuit games with arbitrarily small error. For e > 0, this algorithm finds a winning strategy for the evader provided that there is a winning strategy that always stays at least E distance from the pursuer and all obstacles. If the obstacles are described with n bits, then the algorithm runs in time (n/e)0(1), and applies to several types of pursuit games: either velocity or both acceleration and velocity may be bounded, and the bound may be of either the L2- or L&infin-norm. Our algorithms also generalize to when the obstacles have constant degree algebraic descriptions, and are allowed to have predictable movement

    Computing global configuration-space maps using multidimensional set-theoretic modelling

    Get PDF
    Available from British Library Document Supply Centre-DSC:DXN032880 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version
    corecore