21,473 research outputs found

    Root Isolation of Zero-dimensional Polynomial Systems with Linear Univariate Representation

    Get PDF
    In this paper, a linear univariate representation for the roots of a zero-dimensional polynomial equation system is presented, where the roots of the equation system are represented as linear combinations of roots of several univariate polynomial equations. The main advantage of this representation is that the precision of the roots can be easily controlled. In fact, based on the linear univariate representation, we can give the exact precisions needed for roots of the univariate equations in order to obtain the roots of the equation system to a given precision. As a consequence, a root isolation algorithm for a zero-dimensional polynomial equation system can be easily derived from its linear univariate representation.Comment: 19 pages,2 figures; MM-Preprint of KLMM, Vol. 29, 92-111, Aug. 201

    A Generic Position Based Method for Real Root Isolation of Zero-Dimensional Polynomial Systems

    Full text link
    We improve the local generic position method for isolating the real roots of a zero-dimensional bivariate polynomial system with two polynomials and extend the method to general zero-dimensional polynomial systems. The method mainly involves resultant computation and real root isolation of univariate polynomial equations. The roots of the system have a linear univariate representation. The complexity of the method is O~B(N10)\tilde{O}_B(N^{10}) for the bivariate case, where N=max(d,τ)N=\max(d,\tau), dd resp., τ\tau is an upper bound on the degree, resp., the maximal coefficient bitsize of the input polynomials. The algorithm is certified with probability 1 in the multivariate case. The implementation shows that the method is efficient, especially for bivariate polynomial systems.Comment: 24 pages, 5 figure

    Computing Real Roots of Real Polynomials ... and now For Real!

    Full text link
    Very recent work introduces an asymptotically fast subdivision algorithm, denoted ANewDsc, for isolating the real roots of a univariate real polynomial. The method combines Descartes' Rule of Signs to test intervals for the existence of roots, Newton iteration to speed up convergence against clusters of roots, and approximate computation to decrease the required precision. It achieves record bounds on the worst-case complexity for the considered problem, matching the complexity of Pan's method for computing all complex roots and improving upon the complexity of other subdivision methods by several magnitudes. In the article at hand, we report on an implementation of ANewDsc on top of the RS root isolator. RS is a highly efficient realization of the classical Descartes method and currently serves as the default real root solver in Maple. We describe crucial design changes within ANewDsc and RS that led to a high-performance implementation without harming the theoretical complexity of the underlying algorithm. With an excerpt of our extensive collection of benchmarks, available online at http://anewdsc.mpi-inf.mpg.de/, we illustrate that the theoretical gain in performance of ANewDsc over other subdivision methods also transfers into practice. These experiments also show that our new implementation outperforms both RS and mature competitors by magnitudes for notoriously hard instances with clustered roots. For all other instances, we avoid almost any overhead by integrating additional optimizations and heuristics.Comment: Accepted for presentation at the 41st International Symposium on Symbolic and Algebraic Computation (ISSAC), July 19--22, 2016, Waterloo, Ontario, Canad

    Clustering Complex Zeros of Triangular Systems of Polynomials

    Get PDF
    This paper gives the first algorithm for finding a set of natural ϵ\epsilon-clusters of complex zeros of a triangular system of polynomials within a given polybox in Cn\mathbb{C}^n, for any given ϵ>0\epsilon>0. Our algorithm is based on a recent near-optimal algorithm of Becker et al (2016) for clustering the complex roots of a univariate polynomial where the coefficients are represented by number oracles. Our algorithm is numeric, certified and based on subdivision. We implemented it and compared it with two well-known homotopy solvers on various triangular systems. Our solver always gives correct answers, is often faster than the homotopy solver that often gives correct answers, and sometimes faster than the one that gives sometimes correct results.Comment: Research report V6: description of the main algorithm update

    On the Complexity of Real Root Isolation

    Full text link
    We introduce a new approach to isolate the real roots of a square-free polynomial F=i=0nAixiF=\sum_{i=0}^n A_i x^i with real coefficients. It is assumed that each coefficient of FF can be approximated to any specified error bound. The presented method is exact, complete and deterministic. Due to its similarities to the Descartes method, we also consider it practical and easy to implement. Compared to previous approaches, our new method achieves a significantly better bit complexity. It is further shown that the hardness of isolating the real roots of FF is exclusively determined by the geometry of the roots and not by the complexity or the size of the coefficients. For the special case where FF has integer coefficients of maximal bitsize τ\tau, our bound on the bit complexity writes as O~(n3τ2)\tilde{O}(n^3\tau^2) which improves the best bounds known for existing practical algorithms by a factor of n=degFn=deg F. The crucial idea underlying the new approach is to run an approximate version of the Descartes method, where, in each subdivision step, we only consider approximations of the intermediate results to a certain precision. We give an upper bound on the maximal precision that is needed for isolating the roots of FF. For integer polynomials, this bound is by a factor nn lower than that of the precision needed when using exact arithmetic explaining the improved bound on the bit complexity
    corecore