309 research outputs found

    A sharp threshold for random graphs with a monochromatic triangle in every edge coloring

    Full text link
    Let R\R be the set of all finite graphs GG with the Ramsey property that every coloring of the edges of GG by two colors yields a monochromatic triangle. In this paper we establish a sharp threshold for random graphs with this property. Let G(n,p)G(n,p) be the random graph on nn vertices with edge probability pp. We prove that there exists a function c^=c^(n)\hat c=\hat c(n) with 000 0, as nn tends to infinity Pr[G(n,(1-\eps)\hat c/\sqrt{n}) \in \R ] \to 0 and Pr [ G(n,(1+\eps)\hat c/\sqrt{n}) \in \R ] \to 1. A crucial tool that is used in the proof and is of independent interest is a generalization of Szemer\'edi's Regularity Lemma to a certain hypergraph setting.Comment: 101 pages, Final version - to appear in Memoirs of the A.M.

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    A Survey on Monochromatic Connections of Graphs

    Get PDF
    The concept of monochromatic connection of graphs was introduced by Caro and Yuster in 2011. Recently, a lot of results have been published about it. In this survey, we attempt to bring together all the results that dealt with it. We begin with an introduction, and then classify the results into the following categories: monochromatic connection coloring of edge-version, monochromatic connection coloring of vertex-version, monochromatic index, monochromatic connection coloring of total-version.Comment: 26 pages, 3 figure

    Problems and memories

    Full text link
    I state some open problems coming from joint work with Paul Erd\H{o}sComment: This is a paper form of the talk I gave on July 5, 2013 at the centennial conference in Budapest to honor Paul Erd\H{o}

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat

    Online vertex-coloring games in random graphs

    Get PDF
    Consider the following one-player game. The vertices of a random graph on n vertices are revealed to the player one by one. In each step, also all edges connecting the newly revealed vertex to preceding vertices are revealed. The player has a fixed number of colors at her disposal, and has to assign one of these to each vertex immediately. However, she is not allowed to create any monochromatic copy of some fixed graph F in the process. For n → ∞, we study how the limiting probability that the player can color all n vertices in this online fashion depends on the edge density of the underlying random graph. For a large family of graphs F, including cliques and cycles of arbitrary size, and any fixed number of colors, we establish explicit threshold functions for this edge density. In particular, we show that the order of magnitude of these threshold functions depends on the number of colors, which is in contrast to the corresponding offline coloring proble
    • …
    corecore