79 research outputs found

    SPARSE ECHO CANCELLATION USING VARIANTS OF LEAST MEAN FOURTH AND LEAST MEAN SQUARE ALGORITHMS

    Get PDF
    Echo cancellation is the most essential and indispensable component of telephone networks. The impulse responses of most of the networks are sparse in nature; that is, the impulse response has a small percentage of its components with a significant magnitude (large energy), while the rest are zero or small. In these sparse environments, conventional adaptive algorithms like least mean square (LMS) and normalized LMS (NLMS) show substandard and inferior performances. In this paper, the performances of the normalized least mean square (NLMS) algorithm, the normalized least mean fourth (NLMF) and the proportionate normalized least mean fourth (PNLMF) are compared for sparse echo cancellation. The sparseness of both the echo response and the input signal is exploited in this algorithm to achieve improved results at a low computational cost. The PNLMF algorithm showed better results and faster convergence in sparse and non sparse systems, but its results in sparse environments are more impressive. The NLMF algorithm shows good results in sparse environments but not in non-sparse environments. The PNLMS algorithm can be considered superior to the NLMF and NLMS algorithms with respect to the error profile. A modified algorithm, the sparse controlled modified proportionate normalized LMF (SCMPNLMF) algorithm, is proposed, and its performances are compared with the other algorithms

    Trustworthy machine learning through the lens of privacy and security

    Get PDF
    Nowadays, machine learning (ML) becomes ubiquitous and it is transforming society. However, there are still many incidents caused by ML-based systems when ML is deployed in real-world scenarios. Therefore, to allow wide adoption of ML in the real world, especially in critical applications such as healthcare, finance, etc., it is crucial to develop ML models that are not only accurate but also trustworthy (e.g., explainable, privacy-preserving, secure, and robust). Achieving trustworthy ML with different machine learning paradigms (e.g., deep learning, centralized learning, federated learning, etc.), and application domains (e.g., computer vision, natural language, human study, malware systems, etc.) is challenging, given the complicated trade-off among utility, scalability, privacy, explainability, and security. To bring trustworthy ML to real-world adoption with the trust of communities, this study makes a contribution of introducing a series of novel privacy-preserving mechanisms in which the trade-off between model utility and trustworthiness is optimized in different application domains, including natural language models, federated learning with human and mobile sensing applications, image classification, and explainable AI. The proposed mechanisms reach deployment levels of commercialized systems in real-world trials while providing trustworthiness with marginal utility drops and rigorous theoretical guarantees. The developed solutions enable safe, efficient, and practical analyses of rich and diverse user-generated data in many application domains

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions

    ROBUSTNESS ANALYSIS OF THE DATA-SELECTIVE VOLTERRA NLMS ALGORITHM

    Get PDF
    Recently, the data-selective adaptive Volterra filters have been proposed;however, up to now, there are not any theoretical analyses on its behavior rather than numerical simulations. Therefore, in this paper, we analyze the robustness (in the sense of l_2-stability) of the data-selective Volterra normalized least-mean-square (DSVNLMS) algorithm. First, we study the local robustness of this algorithm at any iteration, then we propose a global bound for the error/discrepancy in the coefficient vector. Also, we demonstrate that the DS-VNLMS algorithm improves the parameter estimation for the majority of the iterations that an update is implemented. Moreover, we also prove that if the noise bound is known, then we can set the DS-VNLMS so that it never degrades the estimate. The simulation results corroborate the validity of the executed analysis and demonstrate that the DS-VNLMS algorithm is robust against noise, no matter how its parameters are adopted

    Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey

    Get PDF
    The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving

    User-Entity Differential Privacy in Learning Natural Language Models

    Full text link
    In this paper, we introduce a novel concept of user-entity differential privacy (UeDP) to provide formal privacy protection simultaneously to both sensitive entities in textual data and data owners in learning natural language models (NLMs). To preserve UeDP, we developed a novel algorithm, called UeDP-Alg, optimizing the trade-off between privacy loss and model utility with a tight sensitivity bound derived from seamlessly combining user and sensitive entity sampling processes. An extensive theoretical analysis and evaluation show that our UeDP-Alg outperforms baseline approaches in model utility under the same privacy budget consumption on several NLM tasks, using benchmark datasets.Comment: Accepted at IEEE BigData 202

    Proceedings of the Eighth Italian Conference on Computational Linguistics CliC-it 2021

    Get PDF
    The eighth edition of the Italian Conference on Computational Linguistics (CLiC-it 2021) was held at Università degli Studi di Milano-Bicocca from 26th to 28th January 2022. After the edition of 2020, which was held in fully virtual mode due to the health emergency related to Covid-19, CLiC-it 2021 represented the first moment for the Italian research community of Computational Linguistics to meet in person after more than one year of full/partial lockdown

    Design and Control of Electrical Motor Drives

    Get PDF
    Dear Colleagues, I am very happy to have this Special Issue of the journal Energies on the topic of Design and Control of Electrical Motor Drives published. Electrical motor drives are widely used in the industry, automation, transportation, and home appliances. Indeed, rolling mills, machine tools, high-speed trains, subway systems, elevators, electric vehicles, air conditioners, all depend on electrical motor drives.However, the production of effective and practical motors and drives requires flexibility in the regulation of current, torque, flux, acceleration, position, and speed. Without proper modeling, drive, and control, these motor drive systems cannot function effectively.To address these issues, we need to focus on the design, modeling, drive, and control of different types of motors, such as induction motors, permanent magnet synchronous motors, brushless DC motors, DC motors, synchronous reluctance motors, switched reluctance motors, flux-switching motors, linear motors, and step motors.Therefore, relevant research topics in this field of study include modeling electrical motor drives, both in transient and in steady-state, and designing control methods based on novel control strategies (e.g., PI controllers, fuzzy logic controllers, neural network controllers, predictive controllers, adaptive controllers, nonlinear controllers, etc.), with particular attention to transient responses, load disturbances, fault tolerance, and multi-motor drive techniques. This Special Issue include original contributions regarding recent developments and ideas in motor design, motor drive, and motor control. The topics include motor design, field-oriented control, torque control, reliability improvement, advanced controllers for motor drive systems, DSP-based sensorless motor drive systems, high-performance motor drive systems, high-efficiency motor drive systems, and practical applications of motor drive systems. I want to sincerely thank authors, reviewers, and staff members for their time and efforts. Prof. Dr. Tian-Hua Liu Guest Edito

    Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020

    Get PDF
    On behalf of the Program Committee, a very warm welcome to the Seventh Italian Conference on Computational Linguistics (CLiC-it 2020). This edition of the conference is held in Bologna and organised by the University of Bologna. The CLiC-it conference series is an initiative of the Italian Association for Computational Linguistics (AILC) which, after six years of activity, has clearly established itself as the premier national forum for research and development in the fields of Computational Linguistics and Natural Language Processing, where leading researchers and practitioners from academia and industry meet to share their research results, experiences, and challenges
    corecore