4,065 research outputs found

    Can intelligent optimisation techniques improve computing job scheduling in a Grid environment? review, problem and proposal

    Get PDF
    In the existing Grid scheduling literature, the reported methods and strategies are mostly related to high-level schedulers such as global schedulers, external schedulers, data schedulers, and cluster schedulers. Although a number of these have previously considered job scheduling, thus far only relatively simple queue-based policies such as First In First Out (FIFO) have been considered for local job scheduling within Grid contexts. Our initial research shows that it is worth investigating the potential impact on the performance of the Grid when intelligent optimisation techniques are applied to local scheduling policies. The research problem is defined, and a basic research methodology with a detailed roadmap is presented. This paper forms a proposal with the intention of exchanging ideas and seeking potential collaborators

    A Delay-Optimal Packet Scheduler for M2M Uplink

    Full text link
    In this paper, we present a delay-optimal packet scheduler for processing the M2M uplink traffic at the M2M application server (AS). Due to the delay-heterogeneity in uplink traffic, we classify it broadly into delay-tolerant and delay-sensitive traffic. We then map the diverse delay requirements of each class to sigmoidal functions of packet delay and formulate a utility-maximization problem that results in a proportionally fair delay-optimal scheduler. We note that solving this optimization problem is equivalent to solving for the optimal fraction of time each class is served with (preemptive) priority such that it maximizes the system utility. Using Monte-Carlo simulations for the queuing process at AS, we verify the correctness of the analytical result for optimal scheduler and show that it outperforms other state-of-the-art packet schedulers such as weighted round robin, max-weight scheduler, fair scheduler and priority scheduling. We also note that at higher traffic arrival rate, the proposed scheduler results in a near-minimal delay variance for the delay-sensitive traffic which is highly desirable. This comes at the expense of somewhat higher delay variance for delay-tolerant traffic which is usually acceptable due to its delay-tolerant nature.Comment: Accepted for publication in IEEE MILCOM 2016 (6 pages, 7 figures

    A Case for Cooperative and Incentive-Based Coupling of Distributed Clusters

    Full text link
    Research interest in Grid computing has grown significantly over the past five years. Management of distributed resources is one of the key issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of the system. The current approaches to superscheduling in a grid environment are non-coordinated since application level schedulers or brokers make scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed resources due to suboptimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of distributed clusters based on computational economy. The resulting environment, called \emph{Grid-Federation}, allows the transparent use of resources from the federation when local resources are insufficient to meet its users' requirements. The use of computational economy methodology in coordinating resource allocation not only facilitates the QoS based scheduling, but also enhances utility delivered by resources.Comment: 22 pages, extended version of the conference paper published at IEEE Cluster'05, Boston, M

    Bulk Scheduling with the DIANA Scheduler

    Full text link
    Results from the research and development of a Data Intensive and Network Aware (DIANA) scheduling engine, to be used primarily for data intensive sciences such as physics analysis, are described. In Grid analyses, tasks can involve thousands of computing, data handling, and network resources. The central problem in the scheduling of these resources is the coordinated management of computation and data at multiple locations and not just data replication or movement. However, this can prove to be a rather costly operation and efficient sing can be a challenge if compute and data resources are mapped without considering network costs. We have implemented an adaptive algorithm within the so-called DIANA Scheduler which takes into account data location and size, network performance and computation capability in order to enable efficient global scheduling. DIANA is a performance-aware and economy-guided Meta Scheduler. It iteratively allocates each job to the site that is most likely to produce the best performance as well as optimizing the global queue for any remaining jobs. Therefore it is equally suitable whether a single job is being submitted or bulk scheduling is being performed. Results indicate that considerable performance improvements can be gained by adopting the DIANA scheduling approach.Comment: 12 pages, 11 figures. To be published in the IEEE Transactions in Nuclear Science, IEEE Press. 200

    Hardware as a service - enabling dynamic, user-level bare metal provisioning of pools of data center resources.

    Full text link
    We describe a “Hardware as a Service (HaaS)” tool for isolating pools of compute, storage and networking resources. The goal of HaaS is to enable dynamic and flexible, user-level provisioning of pools of resources at the so-called “bare-metal” layer. It allows experimental or untrusted services to co-exist alongside trusted services. By functioning only as a resource isolation system, users are free to choose between different system scheduling and provisioning systems and to manage isolated resources as they see fit. We describe key HaaS use cases and features. We show how HaaS can provide a valuable, and somehwat overlooked, layer in the software architecture of modern data center management. Documentation and source code for HaaS software are available at: https://github.com/CCI-MOC/haasPartial support for this work was provided by the MassTech Collaborative Research Matching Grant Program, National Science Foundation award #1347525 and several commercial partners of the Mass Open Cloud who may be found at http://www.massopencloud.org.http://www.ieee-hpec.org/2014/CD/index_htm_files/FinalPapers/116.pd
    corecore