1,083 research outputs found

    A set of ontologies to drive tools for the control of vector-borne diseases

    Get PDF
    We are developing a set of ontologies that deal with vector-borne diseases and the arthropod vectors that transmit them. For practical reasons (application priorities), we initiated this project with an ontology of insecticide resistance followed by a series of ontologies that describe malaria as well as physiological processes of mosquitoes that are relevant to, and involved in, disease transmission. These will be expanded to encompass other vector-borne diseases as well as non-mosquito vectors. The aim of the whole undertaking, which is worked out in the frame of the international IDO (Infectious Disease Ontology) project, is to provide the community with a set of ontological tools that can be used both in the development of specific databases and, most importantly, in the construction of decision support systems to control these diseases

    IDOMAL: an ontology for malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ontologies are rapidly becoming a necessity for the design of efficient information technology tools, especially databases, because they permit the organization of stored data using logical rules and defined terms that are understood by both humans and machines. This has as consequence both an enhanced usage and interoperability of databases and related resources. It is hoped that IDOMAL, the ontology of malaria will prove a valuable instrument when implemented in both malaria research and control measures.</p> <p>Methods</p> <p>The OBOEdit2 software was used for the construction of the ontology. IDOMAL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium.</p> <p>Results</p> <p>The first version of the malaria ontology covers both clinical and epidemiological aspects of the disease, as well as disease and vector biology. IDOMAL is meant to later become the nucleation site for a much larger ontology of vector borne diseases, which will itself be an extension of a large ontology of infectious diseases (IDO). The latter is currently being developed in the frame of a large international collaborative effort.</p> <p>Conclusions</p> <p>IDOMAL, already freely available in its first version, will form part of a suite of ontologies that will be used to drive IT tools and databases specifically constructed to help control malaria and, later, other vector-borne diseases. This suite already consists of the ontology described here as well as the one on insecticide resistance that has been available for some time. Additional components are being developed and introduced into IDOMAL.</p

    MIRO and IRbase: IT Tools for the Epidemiological Monitoring of Insecticide Resistance in Mosquito Disease Vectors

    Get PDF
    It is a historical fact that a successful campaign against vector populations is one of the prerequisites for effectively fighting and eventually eradicating arthropod-borne diseases, be that in an epidemic or, even more so, in endemic cases. Based mostly on the use of insecticides and environmental management, vector control is now increasingly hampered by the occurrence of insecticide resistance that manifests itself, and spreads rapidly, briefly after the introduction of a (novel) chemical substance. We make use here of a specially built ontology, MIRO, to drive a new database, IRbase, dedicated to storing data on the occurrence of insecticide resistance in mosquito populations worldwide. The ontological approach to the design of databases offers the great advantage that these can be searched in an efficient way. Moreover, it also provides for an increased interoperability of present and future epidemiological tools. IRbase is now being populated by both older data from the literature and data recently collected from field

    The Ontology for Parasite Lifecycle (OPL): towards a consistent vocabulary of lifecycle stages in parasitic organisms.

    Get PDF
    BACKGROUND: Genome sequencing of many eukaryotic pathogens and the volume of data available on public resources have created a clear requirement for a consistent vocabulary to describe the range of developmental forms of parasites. Consistent labeling of experimental data and external data, in databases and the literature, is essential for integration, cross database comparison, and knowledge discovery. The primary objective of this work was to develop a dynamic and controlled vocabulary that can be used for various parasites. The paper describes the Ontology for Parasite Lifecycle (OPL) and discusses its application in parasite research. RESULTS: The OPL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium. The first version of the OPL models complex life cycle stage details of a range of parasites, such as Trypanosoma sp., Leishmaniasp., Plasmodium sp., and Shicstosoma sp. In addition, the ontology also models necessary contextual details, such as host information, vector information, and anatomical locations. OPL is primarily designed to serve as a reference ontology for parasite life cycle stages that can be used for database annotation purposes and in the lab for data integration or information retrieval as exemplified in the application section below. CONCLUSION: OPL is freely available at http://purl.obolibrary.org/obo/opl.owl and has been submitted to the BioPortal site of NCBO and to the OBO Foundry. We believe that database and phenotype annotations using OPL will help run fundamental queries on databases to know more about gene functions and to find intervention targets for various parasites. The OPL is under continuous development and new parasites and/or terms are being added.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions

    Get PDF
    Background: MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. Results: MicrO currently has similar to 14550 classes (similar to 2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by similar to 24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. Conclusions: By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we intend MicrO to be a powerful new tool to increase the computing power of bioinformatics tools such as the automated text mining of prokaryotic taxonomic descriptions using natural language processing. We also intend MicrO to support the development of new bioinformatics tools that aim to develop new connections between microbial phenotypes and genotypes (i.e., the gene content in genomes). Future ontology development will include incorporation of pathogenic phenotypes and prokaryotic habitats.This work was funded by grants from the National Science Foundation (award DEB-1208534 to CEB, DEB-1208567 to HC, and DEB-1208685 to LRM) and by a travel grant (to CEB) to attend the 2013 NESCent Ontologies for Evolutionary Biology workshop. RW was supported by CyVerse and the National Science Foundation under award numbers DBI-0735191 and DBI-1265383. Many thanks to Elvis Hsin-Hui Wu (University of Arizona), Gail Gasparich (Towson University), and Gordon Burleigh (University of Florida) for comments and/or assistance with ontology construction and compilation of taxonomic descriptions. We would also like to thank Chris Mungall (LBNL), Oliver He (University of Michigan) for technical assistance with OntoBee and OntoFox, and Gareth Owen (ChEBI project leader, head curator) and other curators at ChEBI for assistance in the incorporation of microbial-specific chemical terms and synonyms into ChEBI. Thanks also to the instructors (Melissa Haendel, Matt Yoder, Jim Balhoff) and students of the 2013 NESCent Ontologies for Evolutionary Biology workshop, and to Karen Cranston (NESCent) and the support staff at NESCent. Thanks also to the OBI-devel team for comments regarding the overall structure of assay terms, and associated object properties, in MicrO.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Mosquitopia

    Get PDF
    This edited volume brings together natural scientists, social scientists and humanists to assess if (or how) we may begin to coexist harmoniously with the mosquito. The mosquito is humanity’s deadliest animal, killing over a million people each year by transmitting malaria, yellow fever, Zika and several other diseases. Yet of the 3,500 species of mosquito on Earth, only a few dozen of them are really dangerous—so that the question arises as to whether humans and their mosquito foe can learn to live peacefully with one another. Chapters assess polarizing arguments for conserving and preserving mosquitoes, as well as for controlling and killing them, elaborating on possible consequences of both strategies. This book provides informed answers to the dual question: could we eliminate mosquitoes, and should we? Offering insights spanning the technical to the philosophical, this is the “go to” book for exploring humanity’s many relationships with the mosquito—which becomes a journey to finding better ways to inhabit the natural world. Mosquitopia will be of interest to anyone wanting to explore dependencies between human health and natural systems, while offering novel perspectives to health planners, medical experts, environmentalists and animal rights advocates

    Life Formed: Evolutionary Design and the Futures of a Political Biology

    Get PDF
    Ph.D.Ph.D. Thesis. University of Hawaiʻi at Mānoa 201
    corecore