81 research outputs found

    A Survey of Clock Synchronization Over Packet-Switched Networks

    Get PDF
    Clock synchronization is a prerequisite for the realization of emerging applications in various domains such as industrial automation and the intelligent power grid. This paper surveys the standardized protocols and technologies for providing synchronization of devices connected by packet-switched networks. A review of synchronization impairments and the state-of-the-art mechanisms to improve the synchronization accuracy is then presented. Providing microsecond to sub-microsecond synchronization accuracy under the presence of asymmetric delays in a cost-effective manner is a challenging problem, and still an open issue in many application scenarios. Further, security is of significant importance for systems where timing is critical. The security threats and solutions to protect exchanged synchronization messages are also discussed

    A Software-based Low-Jitter Servo Clock for Inexpensive Phasor Measurement Units

    Full text link
    This paper presents the design and the implementation of a servo-clock (SC) for low-cost Phasor Measurement Units (PMUs). The SC relies on a classic Proportional Integral (PI) controller, which has been properly tuned to minimize the synchronization error due to the local oscillator triggering the on-board timer. The SC has been implemented into a PMU prototype developed within the OpenPMU project using a BeagleBone Black (BBB) board. The distinctive feature of the proposed solution is its ability to track an input Pulse-Per-Second (PPS) reference with good long-term stability and with no need for specific on-board synchronization circuitry. Indeed, the SC implementation relies only on one co-processor for real-time application and requires just an input PPS signal that could be distributed from a single substation clock

    10 Gigabit White Rabbit: sub-nanosecond timing and data distribution

    Get PDF
    Time synchronization is a critical feature for many scientific facilities and industrial infrastructures. The required performance is progressively increasing everyday, for instance, few tens of nanoseconds for Fifth Generation (5G) networks or sub-nanosecond accuracy on next family of particle accelerators and astrophysics telescopes. Due to this exigent accuracy, many applications require specific timing dedicated networks, increasing the system cost and complexity. Under this context, the new IEEE 1588-2019 High Accuracy (HA) default profile is intensively based on White Rabbit (WR) which can provide sub-nanosecond accurate synchronization for Ethernet networks. However, current WR solutions have not been designed to work properly with high data bandwidth delivery services even in 1 Gigabit Ethernet (GbE) links. On this contribution, the authors propose a new architecture design that enables WR and, consequently, the IEEE 1588-2019 HA profile to be deployed over 10 GbE links solving the already identified data bandwidth problem. Furthermore, this work addresses different experiments needed to characterize the system performance in terms of time synchronization and data transfer. As final result, this contribution presents for the first time in the literature a new WR system which allows high bandwidth data exchange in 10 GbE networks while providing sub-nanosecond accuracy synchronization. The proposed solution maintains the time synchronization performance of existing WR 1 GbE devices with significant advantages in terms of latency and data bandwidth, enabling its deployment in applications that integrate data and synchronization information in the same network.European Union (EU) 725490H2020 ASTERICS 653477AMIGA7 RTI2018-096228-B-C3

    A SECURITY-CENTRIC APPLICATION OF PRECISION TIME PROTOCOL WITHIN ICS/SCADA SYSTEMS

    Get PDF
    Industrial Control System and Supervisory Control and Data Acquisition (ICS/SCADA) systems are key pieces of larger infrastructure that are responsible for safely operating transportation, industrial operations, and military equipment, among many other applications. ICS/SCADA systems rely on precise timing and clear communication paths between control elements and sensors. Because ICS/SCADA system designs place a premium on timeliness and availability of data, security ended up as an afterthought, stacked on top of existing (insecure) protocols. As precise timing is already resident and inherent in most ICS/SCADA systems, a unique opportunity is presented to leverage existing technology to potentially enhance the security of these systems. This research seeks to evaluate the utility of timing as a mechanism to mitigate certain types of malicious cyber-based operations such as a man-on-the-side (MotS) attack. By building a functioning ICS/SCADA system and communication loop that incorporates precise timing strategies in the reporting and control loop, specifically the precision time protocol (PTP), it was shown that certain kinds of MotS attacks can be mitigated by leveraging precise timing.Navy Cyber Warfare Development Group, Suitland, MDLieutenant, United States NavyApproved for public release. Distribution is unlimited

    An Enhanced IEEE1588 Clock Synchronization for Link Delays Based on a System-on-Chip Platform

    Get PDF
    The clock synchronization is considered as a key technology in the time-sensitive networking (TSN) of 5G fronthaul. This paper proposes a clock synchronization enhancement method to optimize the link delays, in order to improve synchronization accuracy. First, all the synchronization dates are filtered twice to get the good calculation results in the processor, and then FPGA adjust the timer on the slave side to complete clock synchronization. This method is implemented by Xilinx Zynq UltraScale+ MPSoC (multiprocessor system-on-chip), using FPGA+ARM software and hardware co-design platform. The master and slave output Pulse Per-Second (PPS) signals. The synchronization accuracy was evaluated by measuring the time offset between PPS signals. Contraposing the TSN, this paper compares the performance of the proposed scheme with some previous methods to show the efficacy of the proposed work. The results show that the slave clock of proposed method is synchronized with the master clock, leading to better robustness and significant improvement in accuracy, with time offset within the range of 40 nanoseconds. This method can be applied to the time synchronization of the 5G open fronthaul network and meets some special service needs in 5G communication

    Time Synchronization system, Investigation and Implementation Proposal

    Get PDF

    Secure GPS clock synchronization in smart grids

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2015As smart grids resultaram da integração da rede elétrica atual no mundo digital. Isso traz várias vantagens às redes elétricas, como uma instalação, configuração e manutenção mais simples e eficiente, mas também a fácil integração na rede de novas tecnologias. Enquanto as redes elétricas continuam a crescer em dimensão e complexidade, elas tornam-se mais importantes para a sociedade e subsequentemente mais sujeitas a ataques distintos. Alguns dos objetivos mais importantes da smart grid são: acomodar uma grande variedade de tecnologias de produção de eletricidade como a eólica, solar e geotérmica; ser resiliente a ataques físicos e ciber-ataques; ter mecanismos de deteção, análise e resposta automática a incidentes; dar mais poder ao consumidor final sobre como e quando a energia pode ser comprada ou consumida. Para implementar actividades relacionadas com a monitorização do estado da smart grid, vários componentes especializados são geograficamente distribuídos pela rede. Um dos dispositivos críticos é o Phase Measurement Unit (Unidade de Medição de Fase) (PMU). Este dispositivo é usado para estimar o estado da smart grid num determinado momento, recolhendo várias métricas sobre a qualidade do sinal elétrico. Para se conseguir criar uma imagem geral da rede inteira, todos estes dispositivos necessitam de ser sincronizados no tempo, assegurando assim que as medições são efetuadas aproximadamente no mesmo instante. A sincronização do tempo desempenha um papel crucial na estabilidade e no funcionamento correto de todos os componentes da smart grid. Dada a importância da sincronização de tempo, e a falta de qualquer tipo de proteção nas soluções atuais, este sistema torna-se num alvo potencial para atacantes. Em conformidade com os standards, a precisão dos relógios dos PMU’s devem ter um erro máximo na ordem dos 30 µs. Isso garante que a informação recolhida sobre o estado da smart grid é válida. Hoje em dia este requisito é satisfeito usando equipamentos GPS em cada sítio onde se encontra um PMU. Quando o GPS foi concebido, não se pensou que podia vir a ter o sucesso e o impacto atual e, portanto, assegurar a sua segurança não foi um ponto importante. Ao longo do tempo passou a ser usado em infraestruturas críticas, o que introduz eventuais problemas graves de segurança. As smart grids são uma destas estruturas críticas onde o GPS está a ser usado sem qualquer tipo de proteção. Atualmente existe também uma versão segura do GPS que é empregue pelas forças militares. Os dispositivos que conseguem decifrar este sinal só estão disponíveis ao exército. Por além disso, todos os detalhes sobre o funcionamento do algoritmo de cifra são mantidos em segredo. Ao longo dos anos foram desenvolvidos vários tipos de ataques ao GPS. O mais básico é o Blocking que consiste simplesmente em impedir a comunicação entre a antena do recetor e o sinal GPS. Isso pode ser conseguido de uma maneira tão simples como tapar a antena com um bocado de metal. Um ataque que tenta também quebrar a ligação com o satélite é o Jamming. A ideia deste ataque é introduzir ruído suficiente para que o recetor não consiga distinguir o sinal original. Estes dois tipos de ataques só conseguem perturbar o funcionamento do recetor GPS. Um tipo de ataque mais potente é o Spoofing. Este ataque consegue modificar o sinal original vindo do satélite de forma a enganar o recetor. Assim é possível fazer com que o recetor GPS mostre uma posição¸ ou tempo incorretos. Nesta dissertação também foi analisada uma evolução deste ataque que tem como alvo a alteração ilegítima dos dados contidos no sinal. Isso pode fazer como que o recetor falhe ou deixe de poder ser usado. Os algoritmos de sincronização de relógios existentes hoje em dia, nomeadamente o Network Time Protocol (NTP) e o Precision Time Protocol (PTP), não são suficientemente robustos, em termos de segurança ou precisão, para serem utilizados na smart grid. O NTP foi concebido para a sincronização de relógios em redes de grande escala mas não consegue fornecer a precisão necessária para os requisitos da smart grid. Por outro lado temos o PTP que consegue atingir uma precisão na ordem dos nanosegundos em certas condições, mas é muito sensível a atrasos e oscilações na rede. Isso faz com que o PTP só consiga garantir uma precisão de tempo na ordem dos nanosegundos em redes de pequena escala. A smart grid usa uma rede de alta velocidade com relativamente pouco tráfego, o que torna o PTP uma possível solução para algumas partes dessa rede. Em termos de segurançaa, o PTP não está preparado para ser utilizado num ambiente tão crítico como a smart grid, sendo suscetível a ataques. O foco desta investigação é encontrar um algoritmo resiliente a faltas, capaz de satisfazer os requisitos de sincronização de tempo necessários para o correto funcionamento da smart grid. Foi desenvolvida uma solução baseada no PTP, que consegue cumprir os requisitos de precisão temporal na smart grid e também consegue mitigar todos os tipos de ataques ao GPS que foram identificados. Para além disso, a solução também permite reduzir o número de recetores de GPS necessários para o funcionamento correto da smart grid.Smart grids resulted from the integration of computer technologies into the current power grid. This brings several advantages, allowing for a faster and more efficient deployment, configuration and maintenance, as well as easy integration of new energy sources (e.g., wind and solar). As smart grids continue to grow in size and complexity, they become subject to failures and attacks from different sources. Time synchronization plays a crucial role in the stability and correct functioning of many grid components. Considering how sensitive time synchronization is, the tight restrictions imposed for correct operation and the lack of any kind of protection, makes this service a potential prime target for attackers. Today most of the time synchronization requirements are met using relatively expensive GPS hardware placed in some locations of the smart grid. When GPS was first devised, nobody could have predicted the success and the impact that it would have and therefore, security was never an important concern. Through the years, it slowly gained entrance into more critical systems, where it was never intended to be used, which can lead to serious security problems. The smart grid is just one of these critical systems where GPS is being employed without any kind of protection. The focus of this research is trying to solve this problem, by proposing a more secure and robust clock synchronization algorithm. A solution based on the Precision Time Protocol (PTP) was developed that manages to fulfill the time synchronization requirements of the smart grid and is also capable of mitigating all types of identified GPS attacks. As an added benefit, the solution may also reduce the number of GPS receivers necessary for the correct operation of the smart grid, contributing to decrease costs

    IMPLEMENTING PROPOSED IEEE 1588 INTEGRATED SECURITY MECHANISM

    Get PDF
    The IEEE 1588 Precision Time Protocol is the industry standard for precise time synchronization, used in applications such as the power grid, telecommunications, and audio-video bridging, among many others. However, the standard\u27s recommendations on how to secure the protocol are lacking, and thus have not been widely adopted. A new revision of IEEE 1588 is currently being developed, which will include revised specifications regarding security. The aim of this thesis is to explore the feasibility of the proposed security mechanism, specifically as it would apply to use in the power grid, through implementation and evaluation. The security mechanism consists of two verification approaches, immediate and delayed; we implemented both approaches on top of PTPd, an existing open source implementation of PTP. We support the immediate verification security approach using manual key management at startup, and we support the delayed verification security approach emulating automated key management for a set of security parameters corresponding to one manually configured time period. In our experiments, we found that added performance cost for both verification approaches was within 30 μs, and PTP synchronization quality remained intact when security was enabled. This work should increase awareness and accelerate the adoption of the proposed security mechanism in the power industry

    Supervisory Wireless Control for Critical Industrial Applications

    Get PDF
    corecore