16,638 research outputs found

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    Cloud-based manufacturing-as-a-service environment for customized products

    Get PDF
    This paper describes the paradigm of cloud-based services which are used to envisage a new generation of configurable manufacturing systems. Unlike previous approaches to mass customization (that simply reprogram individual machines to produce specific shapes) the system reported here is intended to enable the customized production of technologically complex products by dynamically configuring a manufacturing supply chain. In order to realize such a system, the resources (i.e. production capabilities) have to be designed to support collaboration throughout the whole production network, including their adaption to customer-specific production. The flexible service composition as well as the appropriate IT services required for its realization show many analogies with common cloud computing approaches. For this reason, this paper describes the motivation and challenges that are related to cloud-based manufacturing and illustrates emerging technologies supporting this vision byestablishing an appropriate Manufacturing-as-a-Service environment based on manufacturing service descriptions

    VLSI Revisited - Revival in Japan

    Get PDF
    This paper describes the abundance of semiconductor consortia that have come into existence in Japan since the mid-1990s. They clearly reflect the ambition of the government - through its reorganized ministry METI and company initiatives - to regain some of the industrial and technological leadership that Japan has lost. The consortia landscape is very different in Japan compared with EU and the US. Outside Japan the universities play a much bigger and very important role. In Europe there has emerged close collaboration, among national government agencies, companies and the EU Commission in supporting the IT sector with considerable attention to semiconductor technologies. Another major difference, and possibly the most important one, is the fact that US and EU consortia include and mix partners from different areas of the semiconductor landscape including wafer makers, material suppliers, equipment producers and integrated device makers.semiconductors, Hitachi, Sony, Toshiba, Elpida, Renesas, Sematech, VLSI, JESSI, MEDEA, ASPLA, MIRAI, innovation system

    VLSI REVISITED – REVIVAL IN JAPAN

    Get PDF
    This paper describes the abundance of semiconductor consortia that have come into existence in Japan since the mid-1990s. They clearly reflect the ambition of the government – through its reorganized ministry METI and company initiatives - to regain some of the industrial and technological leadership that Japan has lost. The consortia landscape is very different in Japan compared with EU and the US. Outside Japan the universities play a much bigger and very important role. In Europe there has emerged close collaboration, among national government agencies, companies and the EU Commission in supporting the IT sector with considerable attention to semiconductor technologies. Another major difference, and possibly the most important one, is the fact that US and EU consortia include and mix partners from different areas of the semiconductor landscape including wafer makers, material suppliers, equipment producers and integrated device makers.semiconductors; Hitachi; Sony; Toshiba; Elpida; Renesas; Sematech; VLSI; JESSI; MEDEA; ASPLA; MIRAI; innovation system

    A Distributed-Ledger, Edge-Computing Architecture for Automation and Computer Integration in Semiconductor Manufacturing

    Get PDF
    Contemporary 300mm semiconductor manufacturing systems have highly automated and digitalized cyber-physical integration. They suffer from the profound problems of integrating large, centralized legacy systems with small islands of automation. With the recent advances in disruptive technologies, semiconductor manufacturing has faced dramatic pressures to reengineer its automation and computer integrated systems. This paper proposes a Distributed- Ledger, Edge-Computing Architecture (DLECA) for automation and computer integration in semiconductor manufacturing. Based on distributed ledger and edge computing technologies, DLECA establishes a decentralized software framework where manufacturing data are stored in distributed ledgers and processed locally by executing smart contracts at the edge nodes. We adopt an important topic of automation and computer integration for semiconductor research & development (R&D) operations as the study vehicle to illustrate the operational structure and functionality, applications, and feasibility of the proposed DLECA software framewor

    Automation and Integration in Semiconductor Manufacturing

    Get PDF

    The electronics industry in central and eastern Europe: an emerging production location in the alignment of networks perspective

    Get PDF
    This paper analyses the emergence of central Europe as a new location for the production of electronics. The main factors that drive integration in the region into global production networks are also analysed, as well as prospects for upgrading the industry by using network alignment perspectives. Foreign investment is the primary vehicle of integration of CEE electronics firms into global production networks, and Hungary has moved furthest along this path, positioning itself as a major low-cost supply base in the region. Czech and Polish electronics industries are connected, in smaller, but increasing, degrees to international electronics production networks. Networks that are being built in CEE in electronics are usually confined to subsidiaries with still limited local subcontracting; they are export-oriented and are expanding. Local subsidiaries have mastered production capabilities and several subsidiaries in Hungary are European mandate suppliers in their respective lines of business. EU demand is the main pull factor, which gives cohesion to the actions of MNCs as well as to the action of local and national governments in CEE. The layer of local firms is still very weak with very limited capabilities in core technologies. This is the key weakness which prevents further alignment of networks in CEE electronics. Local governments play an important role in working jointly with foreign investors in establishing industrial parks and new capacities
    corecore