1,123 research outputs found

    Military Transformation and the Defense Industry after Next

    Get PDF
    Though still adjusting to the end of the Cold War, the defense industry is now confronted with the prospect of military transformation. Since the terrorist attacks on 11 September 2001, many firms have seen business improve in response to the subsequent large increase in the defense budget. But in the longer run, the defense sector\u27s military customers intend to reinvent themselves for a future that may require the acquisition of unfamiliar weapons and support systems.https://digital-commons.usnwc.edu/usnwc-newport-papers/1016/thumbnail.jp

    A Conceptual Model for Network Decision Support Systems

    Get PDF
    We introduce the concept of a network DSS (NWDSS) consisting of fluid, heterogeneous nodes of human and machine agents, connected by wireless technology, which may enter and leave the network at unpredictable times, yet must also cooperate in decision-making activities. We describe distinguishing properties of the NWDSS and propose a 3-tier conceptual model comprised of digital infrastructure, transactive memory systems and emergent collaborative decision-making. We suggest a decision loop of Sense-Analyze-Adapt-Memory leveraging TMS as a starting point for addressing the agile collaborative requirements of emergent decision-making. Several examples of innovative NWDSS services are presented from Naval Postgraduate School field experiments

    Unmanned systems interoperability standards

    Get PDF
    Over the past several years, there has been rapid growth in the development and employment of unmanned systems in military and civilian endeavors. Some military organizations have expressed concern that these systems are being fielded without sufficient capabilities to interoperate with existing systems. Despite recognition of this requirement, interoperability efforts remain diverse and disjointed across the United States and internationally. The Naval Postgraduate School (NPS), Monterey, California, was sponsored by the U.S. Office of the Secretary of Defense (OSD) Joint Ground Robotics Enterprise (JGRE) in Fiscal Year 2016 (FY16) to explore (1) enhancement of robotics education; (2) improved representation of robotic systems in combat simulations; and (3) interoperability standards for military robotics systems. This report discusses work performed in FY16 to identify current and emerging interoperability standards for unmanned systems, including interactions of robotic systems with command and control (C2) and simulation systems. The investigation included assessment of the applicability of standardization activities in the Simulation Interoperability Standards Organization (SISO) in its development of the Phase 1 Coalition Battle Management Language (C-BML) and currently in-progress Command and Control Systems - Simulation Systems Interoperation (C2SIM) standardization efforts. The report provides a recommended approach, standards, activities, and timetable for a cross-system communications roadmap.Secretary of Defense Joint Ground Robotics Enterprise, 3090 Defense Pentagon, Room 5C756, Washington, DC 20301Office of the Secretary of Defense Joint Ground Robotics Enterprise.Approved for public release; distribution is unlimited

    System elements required to guarantee the reliability, availability and integrity of decision-making information in a complex airborne autonomous system

    Get PDF
    Current air traffic management systems are centred on piloted aircraft, in which all the main decisions are made by humans. In the world of autonomous vehicles, there will be a driving need for decisions to be made by the system rather than by humans due to the benefits of more automation such as reducing the likelihood of human error, handling more air traffic in national airspace safely, providing prior warnings of potential conflicts etc. The system will have to decide on courses of action that will have highly safety critical consequences. One way to ensure these decisions are robust is to guarantee that the information being used for the decision is valid and of very high integrity. [Continues.

    The future of UAS: standards, regulations, and operational experiences [workshop report]

    Get PDF
    This paper presents the outcomes of "The Future of UAS: Standards, Regulations and Operational Experiences" workshop, held on the 7th and 8th of December, 2006 in Brisbane, Queensland, Australia. The goal of the workshop was to identify recent international activities in the Unmanned Airborne Systems (UAS) airspace integration problem. The workshop attracted a broad cross-section of the UAS community, including: airspace and safety regulators, developers, operators and researchers. The three themes of discussion were: progress in the development of standards and regulations, lessons learnt from recent operations, and advances in new technologies. This paper summarises the activities of the workshop and explores the important outcomes and trends as perceived by the authors

    Evaluating the impacts of digitalization on ship operation: examining how to enhance maritime safety

    Get PDF

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    A Survey on Cellular-connected UAVs: Design Challenges, Enabling 5G/B5G Innovations, and Experimental Advancements

    Full text link
    As an emerging field of aerial robotics, Unmanned Aerial Vehicles (UAVs) have gained significant research interest within the wireless networking research community. As soon as national legislations allow UAVs to fly autonomously, we will see swarms of UAV populating the sky of our smart cities to accomplish different missions: parcel delivery, infrastructure monitoring, event filming, surveillance, tracking, etc. The UAV ecosystem can benefit from existing 5G/B5G cellular networks, which can be exploited in different ways to enhance UAV communications. Because of the inherent characteristics of UAV pertaining to flexible mobility in 3D space, autonomous operation and intelligent placement, these smart devices cater to wide range of wireless applications and use cases. This work aims at presenting an in-depth exploration of integration synergies between 5G/B5G cellular systems and UAV technology, where the UAV is integrated as a new aerial User Equipment (UE) to existing cellular networks. In this integration, the UAVs perform the role of flying users within cellular coverage, thus they are termed as cellular-connected UAVs (a.k.a. UAV-UE, drone-UE, 5G-connected drone, or aerial user). The main focus of this work is to present an extensive study of integration challenges along with key 5G/B5G technological innovations and ongoing efforts in design prototyping and field trials corroborating cellular-connected UAVs. This study highlights recent progress updates with respect to 3GPP standardization and emphasizes socio-economic concerns that must be accounted before successful adoption of this promising technology. Various open problems paving the path to future research opportunities are also discussed.Comment: 30 pages, 18 figures, 9 tables, 102 references, journal submissio

    RISKS IDENTIFICATION AND MITIGATION IN UAV APPLICATIONS DEVELOPMENT PROJECTS

    Get PDF
    With the recent advances in aircraft technologies, software, sensors, and communications, Unmanned Aerial Vehicles (UAVs) can offer a wide range of applications. UAVs can play important roles in applications, such as search and rescue, situation awareness in natural disasters, environmental monitoring, and perimeter surveillance. Developing UAV applications involves integrating hardware, software, sensors, and communication components with the UAV’s base system. UAV applications development projects are complex because of the various development stages and the integration complexity of high component. This research addresses the business and technical challenges encountered by UAV applications development and Project Management (PM). It identifies the risks associated with UAV applications development and compares various risk mitigation and management techniques that can be used. The study also investigates the role of Knowledge Management (KM) in reducing and managing risks. Furthermore, this study proposes a KM framework that reduces risks in UAV applications development projects. In addition, the proposed framework relies on KM and text mining techniques to enhance the efficiency of executing these projects

    Military Innovation in the Third Age of U.S. Unmanned Aviation, 1991–2015

    Get PDF
    Military innovation studies have largely relied on monocausal accounts—rationalism, institutionalism, or culture—to explain technologically innovative and adaptive outcomes in defense organizations. None of these perspectives alone provided a compelling explanation for the adoption outcomes of unmanned aerial vehicles (UAVs) in the U.S. military from 1991 to 2015. Two questions motivated this research: Why, despite abundant material resources, mature technology, and operational need, are the most-capable UAVs not in the inventory across the services? What accounts for variations and patterns in UAV innovation adoption? The study selected ten UAV program episodes from the Air Force and Navy, categorized as high-, medium-, and low-end cases, for within-case and cross-case analysis. Primary and secondary sources, plus interviews, enabled process tracing across episodes. The results showed a pattern of adoption or rejection based on a logic-of-utility effectiveness and consistent resource availability: a military problem to solve, and a capability gap in threats or tasks and consistent monetary capacity; furthermore, ideational factors strengthened or weakened adoption. In conclusion, the study undermines single-perspective arguments as sole determinants of innovation, reveals that military culture is not monolithic in determining outcomes, and demonstrates that civil-military relationships no longer operate where civilian leaders hold inordinate sway over military institutions.Lieutenant Colonel, United States Air ForceApproved for public release; distribution is unlimited
    • …
    corecore