638 research outputs found

    Climbing Up Cloud Nine: Performance Enhancement Techniques for Cloud Computing Environments

    Get PDF
    With the transformation of cloud computing technologies from an attractive trend to a business reality, the need is more pressing than ever for efficient cloud service management tools and techniques. As cloud technologies continue to mature, the service model, resource allocation methodologies, energy efficiency models and general service management schemes are not yet saturated. The burden of making this all tick perfectly falls on cloud providers. Surely, economy of scale revenues and leveraging existing infrastructure and giant workforce are there as positives, but it is far from straightforward operation from that point. Performance and service delivery will still depend on the providers’ algorithms and policies which affect all operational areas. With that in mind, this thesis tackles a set of the more critical challenges faced by cloud providers with the purpose of enhancing cloud service performance and saving on providers’ cost. This is done by exploring innovative resource allocation techniques and developing novel tools and methodologies in the context of cloud resource management, power efficiency, high availability and solution evaluation. Optimal and suboptimal solutions to the resource allocation problem in cloud data centers from both the computational and the network sides are proposed. Next, a deep dive into the energy efficiency challenge in cloud data centers is presented. Consolidation-based and non-consolidation-based solutions containing a novel dynamic virtual machine idleness prediction technique are proposed and evaluated. An investigation of the problem of simulating cloud environments follows. Available simulation solutions are comprehensively evaluated and a novel design framework for cloud simulators covering multiple variations of the problem is presented. Moreover, the challenge of evaluating cloud resource management solutions performance in terms of high availability is addressed. An extensive framework is introduced to design high availability-aware cloud simulators and a prominent cloud simulator (GreenCloud) is extended to implement it. Finally, real cloud application scenarios evaluation is demonstrated using the new tool. The primary argument made in this thesis is that the proposed resource allocation and simulation techniques can serve as basis for effective solutions that mitigate performance and cost challenges faced by cloud providers pertaining to resource utilization, energy efficiency, and client satisfaction

    Management And Security Of Multi-Cloud Applications

    Get PDF
    Single cloud management platform technology has reached maturity and is quite successful in information technology applications. Enterprises and application service providers are increasingly adopting a multi-cloud strategy to reduce the risk of cloud service provider lock-in and cloud blackouts and, at the same time, get the benefits like competitive pricing, the flexibility of resource provisioning and better points of presence. Another class of applications that are getting cloud service providers increasingly interested in is the carriers\u27 virtualized network services. However, virtualized carrier services require high levels of availability and performance and impose stringent requirements on cloud services. They necessitate the use of multi-cloud management and innovative techniques for placement and performance management. We consider two classes of distributed applications – the virtual network services and the next generation of healthcare – that would benefit immensely from deployment over multiple clouds. This thesis deals with the design and development of new processes and algorithms to enable these classes of applications. We have evolved a method for optimization of multi-cloud platforms that will pave the way for obtaining optimized placement for both classes of services. The approach that we have followed for placement itself is predictive cost optimized latency controlled virtual resource placement for both types of applications. To improve the availability of virtual network services, we have made innovative use of the machine and deep learning for developing a framework for fault detection and localization. Finally, to secure patient data flowing through the wide expanse of sensors, cloud hierarchy, virtualized network, and visualization domain, we have evolved hierarchical autoencoder models for data in motion between the IoT domain and the multi-cloud domain and within the multi-cloud hierarchy

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities

    Mobile Crowd Sensing in Edge Computing Environment

    Get PDF
    abstract: The mobile crowdsensing (MCS) applications leverage the user data to derive useful information by data-driven evaluation of innovative user contexts and gathering of information at a high data rate. Such access to context-rich data can potentially enable computationally intensive crowd-sourcing applications such as tracking a missing person or capturing a highlight video of an event. Using snippets and pictures captured from multiple mobile phone cameras with specific contexts can improve the data acquired in such applications. These MCS applications require efficient processing and analysis to generate results in real time. A human user, mobile device and their interactions cause a change in context on the mobile device affecting the quality contextual data that is gathered. Usage of MCS data in real-time mobile applications is challenging due to the complex inter-relationship between: a) availability of context, context is available with the mobile phones and not with the cloud, b) cost of data transfer to remote cloud servers, both in terms of communication time and energy, and c) availability of local computational resources on the mobile phone, computation may lead to rapid battery drain or increased response time. The resource-constrained mobile devices need to offload some of their computation. This thesis proposes ContextAiDe an end-end architecture for data-driven distributed applications aware of human mobile interactions using Edge computing. Edge processing supports real-time applications by reducing communication costs. The goal is to optimize the quality and the cost of acquiring the data using a) modeling and prediction of mobile user contexts, b) efficient strategies of scheduling application tasks on heterogeneous devices including multi-core devices such as GPU c) power-aware scheduling of virtual machine (VM) applications in cloud infrastructure e.g. elastic VMs. ContextAiDe middleware is integrated into the mobile application via Android API. The evaluation consists of overheads and costs analysis in the scenario of ``perpetrator tracking" application on the cloud, fog servers, and mobile devices. LifeMap data sets containing actual sensor data traces from mobile devices are used to simulate the application run for large scale evaluation.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Power Modeling and Resource Optimization in Virtualized Environments

    Get PDF
    The provisioning of on-demand cloud services has revolutionized the IT industry. This emerging paradigm has drastically increased the growth of data centers (DCs) worldwide. Consequently, this rising number of DCs is contributing to a large amount of world total power consumption. This has directed the attention of researchers and service providers to investigate a power-aware solution for the deployment and management of these systems and networks. However, these solutions could be bene\ufb01cial only if derived from a precisely estimated power consumption at run-time. Accuracy in power estimation is a challenge in virtualized environments due to the lack of certainty of actual resources consumed by virtualized entities and of their impact on applications\u2019 performance. The heterogeneous cloud, composed of multi-tenancy architecture, has also raised several management challenges for both service providers and their clients. Task scheduling and resource allocation in such a system are considered as an NP-hard problem. The inappropriate allocation of resources causes the under-utilization of servers, hence reducing throughput and energy e\ufb03ciency. In this context, the cloud framework needs an e\ufb00ective management solution to maximize the use of available resources and capacity, and also to reduce the impact of their carbon footprint on the environment with reduced power consumption. This thesis addresses the issues of power measurement and resource utilization in virtualized environments as two primary objectives. At \ufb01rst, a survey on prior work of server power modeling and methods in virtualization architectures is carried out. This helps investigate the key challenges that elude the precision of power estimation when dealing with virtualized entities. A di\ufb00erent systematic approach is then presented to improve the prediction accuracy in these networks, considering the resource abstraction at di\ufb00erent architectural levels. Resource usage monitoring at the host and guest helps in identifying the di\ufb00erence in performance between the two. Using virtual Performance Monitoring Counters (vPMCs) at a guest level provides detailed information that helps in improving the prediction accuracy and can be further used for resource optimization, consolidation and load balancing. Later, the research also targets the critical issue of optimal resource utilization in cloud computing. This study seeks a generic, robust but simple approach to deal with resource allocation in cloud computing and networking. The inappropriate scheduling in the cloud causes under- and over- utilization of resources which in turn increases the power consumption and also degrades the system performance. This work \ufb01rst addresses some of the major challenges related to task scheduling in heterogeneous systems. After a critical analysis of existing approaches, this thesis presents a rather simple scheduling scheme based on the combination of heuristic solutions. Improved resource utilization with reduced processing time can be achieved using the proposed energy-e\ufb03cient scheduling algorithm

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications
    • …
    corecore