458 research outputs found

    Some initial results and observations from a series of trials within the Ofcom TV White Spaces pilot

    Get PDF

    A manifesto for the creative economy

    Get PDF
    The UK\u27s creative economy is one of its great national strengths, historically deeply rooted and accounting for around one-tenth of the whole economy. It provides jobs for 2.5 million people – more than in financial services, advanced manufacturing or construction – and in recent years, this creative workforce has grown four times faster than the workforce as a whole. But behind this success lies much disruption and business uncertainty, associated with digital technologies. Previously profitable business models have been swept away, young companies from outside the UK have dominated new internet markets, and some UK creative businesses have struggled to compete. UK policymakers too have failed to keep pace with developments in North America and parts of Asia. But it is not too late to refresh tired policies. This manifesto sets out our 10-point plan to bolster one of the UK\u27s fastest growing sectors

    Costs and benefits of superfast broadband in the UK

    Get PDF
    This paper was commissioned from LSE Enterprise by Convergys Smart Revenue Solutions to stimulate an open and constructive debate among the main stakeholders about the balance between the costs, the revenues, and the societal benefits of ‘superfast’ broadband. The intent has been to analyse the available facts and to propose wider perspectives on economic and social interactions. The paper has two parts: one concentrates on superfast broadband deployment and the associated economic and social implications (for the UK and its service providers), and the other considers alternative social science approaches to these implications. Both parts consider the potential contribution of smart solutions to superfast broadband provision and use. Whereas Part I takes the “national perspective” and the “service provider perspective”, which deal with the implications of superfast broadband for the UK and for service providers, Part II views matters in other ways, particularly by looking at how to realise values beyond the market economy, such as those inherent in neighbourliness, trust and democrac

    Design and implementation of components for renewably-powered base-stations with heterogeneous access channel

    Get PDF
    Providing high-speed broadband services in remote areas can be a challenging task, especially because of the lack of network infrastructure. As typical broadband technologies are often expensive to deploy, they require large investment from the local authorities. Previous studies have shown that a viable alternative is to use wireless base stations with high-throughput point to point (PTP) backhaul links. With base stations comes the problem of powering their systems, it is tackled in this thesis by relying on renewable energy harvesting, such as solar panels or wind turbines. This thesis, in the context of the sustainable cellular network harvesting ambient energy (SCAVENGE) project, aims to contribute to a reliable and energy efficient solution to this problem, by adjusting the design of an existing multi-radio energy harvesting base station. In Western Europe, 49 channels of 8 MHz were used for analogue TV transmissions, ranging from 470 MHz (Channel 21) to 862 MHz (Channel 69); this spectrum, now partially unused due to the digital television (DTV) switch-over, has been opened to alternative uses by the regulatory authorities. Using this newly freed ultra high frequency (UHF) range, also known as TV white space (TVWS), can offer reliable low-cost broadband access to housings and businesses in low-density areas. While UHF transmitters allow long range links, the overcrowding of the TV spectrum limits the achievable throughput; to increase the capacity of such TVWS rural broadband base station the UHF radio has previously been combined with a lower-range higher throughput GHz radio like Wireless Fidelity (WiFi). From the regulatory constraints of TVWS applications arises the need for frequency agile transceivers that observe strict spectral mask requirements, this guided previous works towards discrete Fourier transform (DFT) modulated filter-bank multicarrier (FBMC) systems. These systems are numerically efficient, as they permit the up-and-down conversion of the 40 TV channels at the cost of a single channel transceiver and the modulating transform. Typical implementations rely on power-of two fast Fourier transforms (FFTs); however the smallest transform covering the full 40 channels of the TVWS spectrum is a 64 points wide, thus involving 24 unused channels. In order to attain a more numerically-efficient implemented design, we introduce the use of mixed-radix FFTs modulating transform. Testing various sizes and architectures, this approach provides up to 6.7% of energy saving compared to previous designs. Different from orthogonal frequency-division multiplexing (OFDM), FBMC systems are generally expected to be more robust to synchronisation errors, as oversampled FBMC systems can include a guard band, and even in a doubly-dispersive channel, inter-carrier interference (ICI) can be considered negligible. Even though sub-channels can be treated independently—i.e. without the use of cross-terms—they still require equalisation. We introduce a per-band equalisation, amongst different options, a robust and fast blind approach based on a concurrent constant modulus (CM)/decision directed (DD) fractionally-space equaliser (FSE) is selected. The selected approach is capable of equalising a frequency-selective channel. Furthermore the proposed architecture is advantageous in terms of power consumption and implementation cost. After focussing on the design of the radio for TVWS transmission, we address a multi-radio user assignment problem. Using various power consumption and harvesting models for the base station, we formulate two optimisation problems, the first focuses on the base station power consumption, while the second concentrates on load balancing. We employ a dynamic programming approach to optimise the user assignment. The use of such algorithms could allow a downsizing of the power supply systems (harvesters and batteries), thus reducing the cost of the base station. Furthermore the algorithms provide a better balance between the number of users assigned to each network, resulting in a higher quality of service (QoS) and energy efficiency.Providing high-speed broadband services in remote areas can be a challenging task, especially because of the lack of network infrastructure. As typical broadband technologies are often expensive to deploy, they require large investment from the local authorities. Previous studies have shown that a viable alternative is to use wireless base stations with high-throughput point to point (PTP) backhaul links. With base stations comes the problem of powering their systems, it is tackled in this thesis by relying on renewable energy harvesting, such as solar panels or wind turbines. This thesis, in the context of the sustainable cellular network harvesting ambient energy (SCAVENGE) project, aims to contribute to a reliable and energy efficient solution to this problem, by adjusting the design of an existing multi-radio energy harvesting base station. In Western Europe, 49 channels of 8 MHz were used for analogue TV transmissions, ranging from 470 MHz (Channel 21) to 862 MHz (Channel 69); this spectrum, now partially unused due to the digital television (DTV) switch-over, has been opened to alternative uses by the regulatory authorities. Using this newly freed ultra high frequency (UHF) range, also known as TV white space (TVWS), can offer reliable low-cost broadband access to housings and businesses in low-density areas. While UHF transmitters allow long range links, the overcrowding of the TV spectrum limits the achievable throughput; to increase the capacity of such TVWS rural broadband base station the UHF radio has previously been combined with a lower-range higher throughput GHz radio like Wireless Fidelity (WiFi). From the regulatory constraints of TVWS applications arises the need for frequency agile transceivers that observe strict spectral mask requirements, this guided previous works towards discrete Fourier transform (DFT) modulated filter-bank multicarrier (FBMC) systems. These systems are numerically efficient, as they permit the up-and-down conversion of the 40 TV channels at the cost of a single channel transceiver and the modulating transform. Typical implementations rely on power-of two fast Fourier transforms (FFTs); however the smallest transform covering the full 40 channels of the TVWS spectrum is a 64 points wide, thus involving 24 unused channels. In order to attain a more numerically-efficient implemented design, we introduce the use of mixed-radix FFTs modulating transform. Testing various sizes and architectures, this approach provides up to 6.7% of energy saving compared to previous designs. Different from orthogonal frequency-division multiplexing (OFDM), FBMC systems are generally expected to be more robust to synchronisation errors, as oversampled FBMC systems can include a guard band, and even in a doubly-dispersive channel, inter-carrier interference (ICI) can be considered negligible. Even though sub-channels can be treated independently—i.e. without the use of cross-terms—they still require equalisation. We introduce a per-band equalisation, amongst different options, a robust and fast blind approach based on a concurrent constant modulus (CM)/decision directed (DD) fractionally-space equaliser (FSE) is selected. The selected approach is capable of equalising a frequency-selective channel. Furthermore the proposed architecture is advantageous in terms of power consumption and implementation cost. After focussing on the design of the radio for TVWS transmission, we address a multi-radio user assignment problem. Using various power consumption and harvesting models for the base station, we formulate two optimisation problems, the first focuses on the base station power consumption, while the second concentrates on load balancing. We employ a dynamic programming approach to optimise the user assignment. The use of such algorithms could allow a downsizing of the power supply systems (harvesters and batteries), thus reducing the cost of the base station. Furthermore the algorithms provide a better balance between the number of users assigned to each network, resulting in a higher quality of service (QoS) and energy efficiency

    Gender-based Violence Among UK University Students and Staff: A Socio-Ecological Framework

    Get PDF
    Theories have been used to explain gender-based violence (GBV) in U.S. universities (e.g. Gervais, DiLillo and McChargue, 2014; Tewksbury and Mustaine's, 2001) but they have limited utility in UK universities, as the history, composition, geography, and culture of UK universities differs (Phipps and Smith, 2012; Stenning et al., 2012). Due to these differences, a theoretical framework relevant to UK universities is needed that can guide studies and contextualise findings. As a starting point, this working paper adapted Hagemann-White et al.’s (2010) framework, which was developed for the European Union (EU). To date, this framework is the most researched, demonstrated and wholistic model for the EU. The framework used an ecological model to identify and categorise factors facilitating and scaffolding GBV, including policies, sanctions, redress and implementation of laws, to provide nation states with a framework to guide developing and implementing policies that would more effectively prevent and combat GBV. This working paper aimed to tailor Hagemann-White et al.’s model to UK universities, using a more sophisticated understanding of intersectional (dis)advantage (such as ethnicity, gender, sexuality, disability, class, age), men and masculinities, peer-group support for violence, environmental time-space and power relations, and legal duties in prevention and response

    Online harms white paper. April 2019

    Get PDF
    corecore