2,184 research outputs found

    Learning models for semantic classification of insufficient plantar pressure images

    Get PDF
    Establishing a reliable and stable model to predict a target by using insufficient labeled samples is feasible and effective, particularly, for a sensor-generated data-set. This paper has been inspired with insufficient data-set learning algorithms, such as metric-based, prototype networks and meta-learning, and therefore we propose an insufficient data-set transfer model learning method. Firstly, two basic models for transfer learning are introduced. A classification system and calculation criteria are then subsequently introduced. Secondly, a dataset of plantar pressure for comfort shoe design is acquired and preprocessed through foot scan system; and by using a pre-trained convolution neural network employing AlexNet and convolution neural network (CNN)- based transfer modeling, the classification accuracy of the plantar pressure images is over 93.5%. Finally, the proposed method has been compared to the current classifiers VGG, ResNet, AlexNet and pre-trained CNN. Also, our work is compared with known-scaling and shifting (SS) and unknown-plain slot (PS) partition methods on the public test databases: SUN, CUB, AWA1, AWA2, and aPY with indices of precision (tr, ts, H) and time (training and evaluation). The proposed method for the plantar pressure classification task shows high performance in most indices when comparing with other methods. The transfer learning-based method can be applied to other insufficient data-sets of sensor imaging fields

    Vehicle-Rear: A New Dataset to Explore Feature Fusion for Vehicle Identification Using Convolutional Neural Networks

    Full text link
    This work addresses the problem of vehicle identification through non-overlapping cameras. As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear, that contains more than three hours of high-resolution videos, with accurate information about the make, model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their license plates. To explore our dataset we design a two-stream CNN that simultaneously uses two of the most distinctive and persistent features available: the vehicle's appearance and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with similar designs or by very close license plate identifiers. In the first network stream, shape similarities are identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different cameras. In the second stream, we use a CNN for OCR to extract textual information, confidence scores, and string similarities from a pair of high-resolution license plate patches. Then, features from both streams are merged by a sequence of fully connected layers for decision. In our experiments, we compared the two-stream network against several well-known CNN architectures using single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at https://github.com/icarofua/vehicle-rear

    A class of Siamese twin Menon designs

    Get PDF
    A{0,±1}-matrix S is called a Siamese twin design sharing the entries of I, if S = I + K − L, where I, K, L are non-zero {0, 1}-matrices and both I + K and I + L are incidence matrices of symmetric designs with the same parameters. Let p and 2p−1 be prime powers and p ≡ 3 (mod 4). We describe a construction of a Siamese twin Menon design with parameters (4p², 2p² −p, p² −p), yielding a Siamese twin Hadamard design with parameters (4p ²− 1, 2p ²− 1, p² − 1)

    Research on self-cross transformer model of point cloud change detecter

    Full text link
    With the vigorous development of the urban construction industry, engineering deformation or changes often occur during the construction process. To combat this phenomenon, it is necessary to detect changes in order to detect construction loopholes in time, ensure the integrity of the project and reduce labor costs. Or the inconvenience and injuriousness of the road. In the study of change detection in 3D point clouds, researchers have published various research methods on 3D point clouds. Directly based on but mostly based ontraditional threshold distance methods (C2C, M3C2, M3C2-EP), and some are to convert 3D point clouds into DSM, which loses a lot of original information. Although deep learning is used in remote sensing methods, in terms of change detection of 3D point clouds, it is more converted into two-dimensional patches, and neural networks are rarely applied directly. We prefer that the network is given at the level of pixels or points. Variety. Therefore, in this article, our network builds a network for 3D point cloud change detection, and proposes a new module Cross transformer suitable for change detection. Simultaneously simulate tunneling data for change detection, and do test experiments with our network

    Dimensions of Information Systems Success

    Get PDF
    The value added by an organization\u27s IT assets is a critical concern to both research and practice. Not surprisingly, a large number of IS effectiveness measures can be found in the IS literature. What is not clear in the literature is what measures are appropriate in a particular context. In this paper we propose a two-dimensional matrix for classifying IS Effectiveness measures. The first dimension is the type of system studied. The second dimension is the stakeholder in whose interests the system is being evaluated. The matrix was tested by using it to classify IS effectiveness measures from 186 empirical papers in three major IS journals for the last nine years. The results indicate that the classifications are meaningful. Hence, the IS Effectiveness Matrix provides a useful guide for conceptualizing effectiveness measurement in IS research, and for choosing appropriate measures, both for research and practice

    Balanced generalized weighing matrices and their applications

    Get PDF
    Balanced generalized weighing matrices include well-known classical combinatorial objects such as Hadamard matrices and conference matrices; moreover, particular classes of BGW -matrices are equivalent to certain relative difference sets. BGW -matrices admit an interesting geometrical interpretation, and in this context they generalize notions like projective planes admitting a full elation or homology group. After surveying these basic connections, we will focus attention on proper BGW -matrices; thus we will not give any systematic treatment of generalized Hadamard matrices, which are the subject of a large area of research in their own right. In particular, we will discuss what might be called the classical parameter series. Here the nicest examples are closely related to perfect codes and to some classical relative difference sets associated with affine geometries; moreover, the matrices in question can be characterized as the unique (up to equivalence) BGW -matrices for the given parameters with minimum q-rank.One can also obtain a wealth of monomially inequivalent examples and deter  mine the q-ranks of all these matrices by exploiting a connection with linear shift register sequences

    Learning Models for Semantic Classification of Insufficient Plantar Pressure Images

    Get PDF
    Establishing a reliable and stable model to predict a target by using insufficient labeled samples is feasible and effective, particularly, for a sensor-generated data-set. This paper has been inspired with insufficient data-set learning algorithms, such as metric-based, prototype networks and meta-learning, and therefore we propose an insufficient data-set transfer model learning method. Firstly, two basic models for transfer learning are introduced. A classification system and calculation criteria are then subsequently introduced. Secondly, a dataset of plantar pressure for comfort shoe design is acquired and preprocessed through foot scan system; and by using a pre-trained convolution neural network employing AlexNet and convolution neural network (CNN)- based transfer modeling, the classification accuracy of the plantar pressure images is over 93.5%. Finally, the proposed method has been compared to the current classifiers VGG, ResNet, AlexNet and pre-trained CNN. Also, our work is compared with known-scaling and shifting (SS) and unknown-plain slot (PS) partition methods on the public test databases: SUN, CUB, AWA1, AWA2, and aPY with indices of precision (tr, ts, H) and time (training and evaluation). The proposed method for the plantar pressure classification task shows high performance in most indices when comparing with other methods. The transfer learning-based method can be applied to other insufficient data-sets of sensor imaging fields

    Space station safety study - Condensed summary report

    Get PDF
    Summary of space station safety stud
    corecore