1,090 research outputs found

    A sequential hypothesis testing procedure for the process capability index Cpk

    Get PDF
    In this study we propose a sequential procedure for hypothesis testing on the Cpk process capability index. We compare the properties of the sequential test with the performances of non-sequential tests by performing an extensive simulation study. The results indicate that the proposed sequential procedure makes it possible to save a large amount of sample size, which can be translated into reduced costs, time and resources

    Near Real-Time Optimal Prediction of Adverse Events in Aviation Data

    Get PDF
    The prediction of anomalies or adverse events is a challenging task, and there are a variety of methods which can be used to address the problem. In this paper, we demonstrate how to recast the anomaly prediction problem into a form whose solution is accessible as a level-crossing prediction problem. The level-crossing prediction problem has an elegant, optimal, yet untested solution under certain technical constraints, and only when the appropriate modeling assumptions are made. As such, we will thoroughly investigate the resilience of these modeling assumptions, and show how they affect final performance. Finally, the predictive capability of this method will be assessed by quantitative means, using both validation and test data containing anomalies or adverse events from real aviation data sets that have previously been identified as operationally significant by domain experts. It will be shown that the formulation proposed yields a lower false alarm rate on average than competing methods based on similarly advanced concepts, and a higher correct detection rate than a standard method based upon exceedances that is commonly used for prediction

    Products and Services

    Get PDF
    Today’s global economy offers more opportunities, but is also more complex and competitive than ever before. This fact leads to a wide range of research activity in different fields of interest, especially in the so-called high-tech sectors. This book is a result of widespread research and development activity from many researchers worldwide, covering the aspects of development activities in general, as well as various aspects of the practical application of knowledge

    Process Capability Calculations with Nonnormal Data in the Medical Device Manufacturing Industry

    Get PDF
    U.S. Food and Drug Administration (FDA) recalls of medical devices are at historically high levels despite efforts by manufacturers to meet stringent agency requirements to ensure quality and patient safety. A factor in the release of potentially dangerous devices might be the interpretations of nonnormal test data by statistically unsophisticated engineers. The purpose of this study was to test the hypothesis that testing by lot provides a better indicator of true process behavior than process capability indices (PCIs) calculated from the mixed lots that often occur in a typical production situation. The foundations of this research were in the prior work of Bertalanffy, Kane, Shewhart, and Taylor. The research questions examined whether lot traceability allows the decomposition of the combination distribution to allow more accurate calculations of PCIs used to monitor medical device production. The study was semiexperimental, using simulated data. While the simulated data were random, the study was a quasiexperimental design because of the control of the simulated data through parameter selection. The results of this study indicate that decomposition does not increase the accuracy of the PCI. The conclusion is that a systems approach using the PCI, additional statistical tools, and expert knowledge could yield more accurate results than could decomposition alone. More accurate results could ensure the production of safer medical devices by correctly identifying noncapable processes (i.e., processes that may not produce required results), while also preventing needless waste of resources and delays in potentially life-savings technology, reaching patients in cases where processes evaluate as noncapable when they are actually capable

    Statistical characterization and control of variation in the manufacture of standard test blocks used for Rockwell hardness testing

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1996, and Thesis (M.S.)--Massachusetts Institute of Technology, Sloan School of Management, 1996.Includes bibliographical references (p. 129-131).by Hans J. Laudon.M.S

    Simulation and Control of Univariate and Multivariate Set-Up Dominant Process

    Get PDF
    This thesis explores the use of statistically valid process improvement tools in low-volume applications. Setting out the following research questions: How can the Six Sigma Measure and Analyse phases of a chronic quality problem be statistically validated in a low-volume process? How can a statistically valid approach for process control be implemented in a low-volume process? And how can this tool be extended to fit multivariate processes and can the calculation of control parameter adjustments be automated? In answer, the thesis presents an enhanced PROcess VAriation Diagnosis Tool (PROVADT) method, driving a Six Sigma improvement project through the Measure and Analyse phases. PROVADT provides a structured sampling plan to perform a Multi-Vari study, Isoplot, Gage R&R and Provisional Process Capability in as few as twenty samples and eighty measurements, making the technique suited to low-volume applications. The enhanced PROVADT method provides a Gage R&R without confounded variation sources, as was the case in the original method, and its practical application was demonstrated through two case studies. Process control tools for low-volume, high-variety manufacturing applications were developed. An adjustable traffic-light chart, with control limits linked to tolerance and simple decision rules, was used for monitoring univariate processes. This tool, the Set-Up Process Algorithm (SUPA), uses probability theory to provide 98% confidence that the process is operating at a pre-specified minimum level of Cp in as few as five samples. SUPA was extended to deal with high-complexity applications, resulting in multivariate SUPA (mSUPA). mSUPA maintains SUPA’s principles, but presents the information about multiple process features on one chart, rather than multiple univariate charts. To supplement the mSUPA tool, a theoretical method for calculating optimal process adjustment when a multivariate process is off-target was introduced, combining discrete-event simulation and numerical optimisation to calculate adjustments

    Validating the Operating Window Concept for Robustness on a Circuit Board Stencil Printing Process

    Get PDF
    The lifecycle of a system is dependent on the system design. However, the concern with quality has been stressed mostly during its production and use. The understanding of the system variability generated by noise variables shifted the quality focus to the design phase. The development of robustness early on the system lifecycle increases the system reliability through its entire life cycle. Although the robust design approach developed by the Taguchi methods application had a great contribution to this philosophy, there is much criticism of this methodology. One alternative to the Taguchi method is the Operating Window methodology. Its application has successfully been demonstrated as a substitute for the Taguchi methods, especially when the response is not quantitative. However, most of the examples were used repeatedly and the steps on the application of the methodology have not been well detailed. Therefore, this project had the objective of developing a unique application of the methodology with a simple approach. Moreover, with the implementation of the methodology, the project aims to identify the difference between a design with a wide output data distribution and a design with a narrow distribution. The methodology followed the Operating Window methodology steps, applying it to a circuit board printing process. The results have shown that it is possible to have a relationship between the Operating Window range and the distribution variation from the system output

    Systems Engineering

    Get PDF
    The book "Systems Engineering: Practice and Theory" is a collection of articles written by developers and researches from all around the globe. Mostly they present methodologies for separate Systems Engineering processes; others consider issues of adjacent knowledge areas and sub-areas that significantly contribute to systems development, operation, and maintenance. Case studies include aircraft, spacecrafts, and space systems development, post-analysis of data collected during operation of large systems etc. Important issues related to "bottlenecks" of Systems Engineering, such as complexity, reliability, and safety of different kinds of systems, creation, operation and maintenance of services, system-human communication, and management tasks done during system projects are addressed in the collection. This book is for people who are interested in the modern state of the Systems Engineering knowledge area and for systems engineers involved in different activities of the area. Some articles may be a valuable source for university lecturers and students; most of case studies can be directly used in Systems Engineering courses as illustrative materials

    Ultra-high precision machining of contact lens polymers

    Get PDF
    Contact lens manufacture requires a high level of accuracy and surface integrity in the range of a few nanometres. Amidst numerous optical manufacturing techniques, single-point diamond turning is widely employed in the making of contact lenses due to its capability of producing optical surfaces of complex shapes and nanometric accuracy. For process optimisation, it is ideal to assess the effects of various conditions and also establish their relationships with the surface finish. Presently, there is little information available on the performance of single point diamond turning when machining contact lens polymers. Therefore, the research work undertaken herewith is aimed at testing known facts in contact lens diamond turning and investigating the performance of ultra-high precision manufacturing of contact lens polymers. Experimental tests were conducted on Roflufocon E, which is a commercially available contact lens polymer and on Precitech Nanoform Ultra-grind 250 precision machining. Tests were performed at varying cutting feeds, speed and depth of cut. Initial experimental tests investigated the influence of process factors affecting surface finish in the UHPM of lenses. The acquired data were statistically analysed using Response Surface Method (RSM) to create a model of the process. Subsequently, a model which uses Runge-Kutta’s fourth order non-linear finite series scheme was developed and adapted to deduce the force occurring at the tool tip. These forces were also statistically analysed and modelled to also predict the effects process factors have on cutting force. Further experimental tests were aimed at establishing the presence of the triboelectric wear phenomena occurring during polymer machining and identifying the most influential process factors. Results indicate that feed rate is a significant factor in the generation of high optical surface quality. In addition, the depth of cut was identified as a significant factor in the generation of low surface roughness in lenses. The influence some of these process factors had was notably linked to triboelectric effects. This tribological effect was generated from the continuous rubbing action of magnetised chips on the cutting tool. This further stresses the presence of high static charging during cutting. Moderately humid cutting conditions presented an adequate means for static charge control and displayed improved surface finishes. In all experimental tests, the feed rate was identified as the most significant factor within the range of cutting parameters employed. Hence, the results validated the fact that feed rate had a high influence in polymer machining. The work also established the relationship on how surface roughness of an optical lens responded to monitoring signals and parameters such as force, feed, speed and depth of cut during machining and it generated models for prediction of surface finishes and appropriate selection of parameters. Furthermore, the study provides a molecular simulation analysis for validating observed conditions occurring at the nanometric scale in polymer machining. This is novel in molecular polymer modelling. The outcome of this research has contributed significantly to the body of knowledge and has provided basic information in the area of precision manufacturing of optical components of high surface integrity such as contact lenses. The application of the research findings presented here cuts across various fields such as medicine, semi-conductors, aerospace, defence, telecom, lasers, instrumentation and life sciences
    corecore