4,111 research outputs found

    Fast space-variant elliptical filtering using box splines

    Get PDF
    The efficient realization of linear space-variant (non-convolution) filters is a challenging computational problem in image processing. In this paper, we demonstrate that it is possible to filter an image with a Gaussian-like elliptic window of varying size, elongation and orientation using a fixed number of computations per pixel. The associated algorithm, which is based on a family of smooth compactly supported piecewise polynomials, the radially-uniform box splines, is realized using pre-integration and local finite-differences. The radially-uniform box splines are constructed through the repeated convolution of a fixed number of box distributions, which have been suitably scaled and distributed radially in an uniform fashion. The attractive features of these box splines are their asymptotic behavior, their simple covariance structure, and their quasi-separability. They converge to Gaussians with the increase of their order, and are used to approximate anisotropic Gaussians of varying covariance simply by controlling the scales of the constituent box distributions. Based on the second feature, we develop a technique for continuously controlling the size, elongation and orientation of these Gaussian-like functions. Finally, the quasi-separable structure, along with a certain scaling property of box distributions, is used to efficiently realize the associated space-variant elliptical filtering, which requires O(1) computations per pixel irrespective of the shape and size of the filter.Comment: 12 figures; IEEE Transactions on Image Processing, vol. 19, 201

    Implementation of Separable & Steerable Gaussian Smoothers on an FPGA

    Get PDF
    Smoothing filters have been extensively used for noise removal and image restoration. Directional filters are widely used in computer vision and image processing tasks such as motion analysis, edge detection, line parameter estimation and texture analysis. It is practically impossible to tune the filters to all possible positions and orientations in real time due to huge computation requirement. The efficient way is to design a few basis filters, and express the output of a directional filter as a weighted sum of the basis filter outputs. Directional filters having these properties are called Steerable Filters. This thesis work emphasis is on the implementation of proposed computationally efficient separable and steerable Gaussian smoothers on a Xilinx VirtexII Pro FPGA platform. FPGAs are Field Programmable Gate Arrays which consist of a collection of logic blocks including lookup tables, flip flops and some amount of Random Access Memory. All blocks are wired together using an array of interconnects. The proposed technique [2] is implemented on a FPGA hardware taking the advantage of parallelism and pipelining

    Time-causal and time-recursive spatio-temporal receptive fields

    Get PDF
    We present an improved model and theory for time-causal and time-recursive spatio-temporal receptive fields, based on a combination of Gaussian receptive fields over the spatial domain and first-order integrators or equivalently truncated exponential filters coupled in cascade over the temporal domain. Compared to previous spatio-temporal scale-space formulations in terms of non-enhancement of local extrema or scale invariance, these receptive fields are based on different scale-space axiomatics over time by ensuring non-creation of new local extrema or zero-crossings with increasing temporal scale. Specifically, extensions are presented about (i) parameterizing the intermediate temporal scale levels, (ii) analysing the resulting temporal dynamics, (iii) transferring the theory to a discrete implementation, (iv) computing scale-normalized spatio-temporal derivative expressions for spatio-temporal feature detection and (v) computational modelling of receptive fields in the lateral geniculate nucleus (LGN) and the primary visual cortex (V1) in biological vision. We show that by distributing the intermediate temporal scale levels according to a logarithmic distribution, we obtain much faster temporal response properties (shorter temporal delays) compared to a uniform distribution. Specifically, these kernels converge very rapidly to a limit kernel possessing true self-similar scale-invariant properties over temporal scales, thereby allowing for true scale invariance over variations in the temporal scale, although the underlying temporal scale-space representation is based on a discretized temporal scale parameter. We show how scale-normalized temporal derivatives can be defined for these time-causal scale-space kernels and how the composed theory can be used for computing basic types of scale-normalized spatio-temporal derivative expressions in a computationally efficient manner.Comment: 39 pages, 12 figures, 5 tables in Journal of Mathematical Imaging and Vision, published online Dec 201

    Invariance of visual operations at the level of receptive fields

    Get PDF
    Receptive field profiles registered by cell recordings have shown that mammalian vision has developed receptive fields tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time. This article presents a theoretical model by which families of idealized receptive field profiles can be derived mathematically from a small set of basic assumptions that correspond to structural properties of the environment. The article also presents a theory for how basic invariance properties to variations in scale, viewing direction and relative motion can be obtained from the output of such receptive fields, using complementary selection mechanisms that operate over the output of families of receptive fields tuned to different parameters. Thereby, the theory shows how basic invariance properties of a visual system can be obtained already at the level of receptive fields, and we can explain the different shapes of receptive field profiles found in biological vision from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment.Comment: 40 pages, 17 figure

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Improvements on "Fast space-variant elliptical filtering using box splines"

    Full text link
    It is well-known that box filters can be efficiently computed using pre-integrations and local finite-differences [Crow1984,Heckbert1986,Viola2001]. By generalizing this idea and by combining it with a non-standard variant of the Central Limit Theorem, a constant-time or O(1) algorithm was proposed in [Chaudhury2010] that allowed one to perform space-variant filtering using Gaussian-like kernels. The algorithm was based on the observation that both isotropic and anisotropic Gaussians could be approximated using certain bivariate splines called box splines. The attractive feature of the algorithm was that it allowed one to continuously control the shape and size (covariance) of the filter, and that it had a fixed computational cost per pixel, irrespective of the size of the filter. The algorithm, however, offered a limited control on the covariance and accuracy of the Gaussian approximation. In this work, we propose some improvements by appropriately modifying the algorithm in [Chaudhury2010].Comment: 7 figure

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    Satellite imagery fusion with an equalized trade-off between spectral and spatial quality

    Get PDF
    En este trabajo se propone una estrategia para obtener imágenes fusionadas con calidad espacial y espectral equilibradas. Esta estrategia está basada en una representación conjunta MultiDirección-MultiRresolución (MDMR), definida a partir de un banco de filtros direccional de paso bajo, complementada con una metodología de búsqueda orientada de los valores de los parámetros de diseño de este banco de filtros. La metodología de búsqueda es de carácter estocástico y optimiza una función objetivo asociada a la medida de la calidad espacial y espectral de la imagen fusionada. Los resultados obtenidos, muestran que un número pequeño de iteraciones del algoritmo de búsqueda propuesto, proporciona valores de los parámetros del banco de filtro que permiten obtener imágenes fusionadas con una calidad espectral superior a la de otros métodos investigados, manteniendo su calidad espacial
    • …
    corecore