11,811 research outputs found

    Supervised Learning for Multi-Domain Text Classification

    Get PDF
    Digital information available on the Internet is increasing day by day. As a result of this, the demand for tools that help people in finding and analyzing all these resources are also growing in number. Text Classification, in particular, has been very useful in managing the information. Text Classification is the process of assigning natural language text to one or more categories based on the content. It has many important applications in the real world. For example, finding the sentiment of the reviews, posted by people on restaurants, movies and other such things are all applications of Text classification. In this project, focus has been laid on Sentiment Analysis, which identifies the opinions expressed in a piece of text. It involves categorizing opinions in text into categories like \u27positive\u27 or \u27negative\u27. Existing works in Sentiment Analysis focused on determining the polarity (Positive or negative) of a sentence. This comes under binary classification, which means classifying the given set of elements into two groups. The purpose of this research is to address a different approach for Sentiment Analysis called Multi Class Sentiment Classification. In this approach the sentences are classified under multiple sentiment classes like positive, negative, neutral and so on. Classifiers are built on the Predictive Model, that consists of multiple phases. Analysis of different sets of features on the data set, like stemmers, n-grams, tf-idf and so on, will be considered for classification of the data. Different classification models like Bayesian Classifier, Random Forest and SGD classifier are taken into consideration for classifying the data and their results are compared. Frameworks like Weka, Apache Mahout and Scikit are used for building the classifiers

    Multilingual Twitter Sentiment Classification: The Role of Human Annotators

    Get PDF
    What are the limits of automated Twitter sentiment classification? We analyze a large set of manually labeled tweets in different languages, use them as training data, and construct automated classification models. It turns out that the quality of classification models depends much more on the quality and size of training data than on the type of the model trained. Experimental results indicate that there is no statistically significant difference between the performance of the top classification models. We quantify the quality of training data by applying various annotator agreement measures, and identify the weakest points of different datasets. We show that the model performance approaches the inter-annotator agreement when the size of the training set is sufficiently large. However, it is crucial to regularly monitor the self- and inter-annotator agreements since this improves the training datasets and consequently the model performance. Finally, we show that there is strong evidence that humans perceive the sentiment classes (negative, neutral, and positive) as ordered

    The Expressive Power of Word Embeddings

    Full text link
    We seek to better understand the difference in quality of the several publicly released embeddings. We propose several tasks that help to distinguish the characteristics of different embeddings. Our evaluation of sentiment polarity and synonym/antonym relations shows that embeddings are able to capture surprisingly nuanced semantics even in the absence of sentence structure. Moreover, benchmarking the embeddings shows great variance in quality and characteristics of the semantics captured by the tested embeddings. Finally, we show the impact of varying the number of dimensions and the resolution of each dimension on the effective useful features captured by the embedding space. Our contributions highlight the importance of embeddings for NLP tasks and the effect of their quality on the final results.Comment: submitted to ICML 2013, Deep Learning for Audio, Speech and Language Processing Workshop. 8 pages, 8 figure

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201
    • …
    corecore