1,288 research outputs found

    Parameter-free aggregation of value functions from multiple experts and uncertainty assessment in multi-criteria evaluation

    Get PDF
    This paper makes a threefold contribution to spatial multi-criteria evaluation (MCE): firstly by presenting a new method concerning value functions, secondly by comparing different approaches to assess the uncertainty of a MCE outcome, and thirdly by presenting a case-study on land-use change. Even though MCE is a well-known methodology in GIScience, there is a lack of practicable approaches to incorporate the potentially diverse views of multiple experts in defining and standardizing the values used to implement input criteria. We propose a new method that allows generating and aggregating non-monotonic value functions, integrating the views of multiple experts. The new approach only requires the experts to provide up to four values, making it easy to be included in questionnaires. We applied the proposed method in a case study that uses MCE to assess the potential of future loss of vineyards in a wine-growing area in Switzerland, involving 13 experts from research, consultancy, government, and practice. To assess the uncertainty of the outcome three different approaches were used: firstly, a complete Monte Carlo simulation with the bootstrapped inputs, secondly a one-factor-at-a-time variation, and thirdly bootstrapping of the 13 inputs with subsequent analytical error propagation. The complete Monte Carlo simulation has shown the most detailed distribution of the uncertainty. However, all three methods indicate a general trend of areas with lower likelihood of future cultivation to show a higher degree of relative uncertainty

    An Integrated FAHP-PROMETHEE Approach For Selecting The Best Flexible Manufacturing System

    Get PDF
    This paper proposes an integrated approach to the decision-making problem that combines the Fuzzy Analytical Hierarchy Process (FAHP) and the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) with the purpose of Evaluation of Flexible Manufacturing Systems with a Group Decision Support System (GDSS). The FAHP is used to determine the weights for each criterion and PROMETHEE is applied to get the final ranking and GAIA plane is used to highlight the conflicts, the similarities and independences among the criteria and the DMs. Finally, a numerical example proposed in this paper determines the most appropriate FMS alternative

    Wind Energy and Multicriteria Analysis in Making Decisions on the Location of Wind Farms: A Case Study in the North-Eastern of Poland

    Get PDF
    This chapter presents an investigation of different methods of multicriteria analysis and different rules of proceedings that have to be taken into account for making decision about location of a wind farm with application in the north-eastern (NE) Poland. Ten multicriteria analyses were discussed taking into account the main criteria on which they are based on utility functions (MAUT, AHP, and DEMATEL), relationship outranking (ELECTRE, PROMETHEE, and ARROW-RAYNAUD), distances (TOPSIS), and decision support (BORDA ranking methods and their modified and COPELAND). Taking into account of nine criteria that should be met by the location of 15 wind turbines in Krynki and Szudzialowo communities, the main three criteria (C3, C8, and C9) were found to differentiate location of eight wind turbines (T-6–T-13), according to two variants (I and II). The Borda ranking method proved that from among the two variants considered, the more suitable location of wind turbines is second variant W II than first variant W I. Variant W II had a higher altitude of the terrain (C3) and less risk of impact on birds (C8) and bats species (C9) than variant W I

    Application of Multicriteria Decision-Making Methods in Railway Engineering: A Case Study of Train Control Information Systems (TCIS)

    Get PDF
    In order to improve its position in the transport market railway, as a complex system, it has to fulfill a number of objectives such as increased capacity and asset utilization, improved reliability and safety, higher customer service levels, better energy efficiency and fewer emissions, along with increased economic viability and profits. Some of these objectives call for the implementation of maximum values, while some of them require minimum values. Additionally, some can be expressed quantitatively, while some, for example, customer service, can be described qualitatively through a descriptive scale of points. The application of MCDM in railway engineering can play a significant role. Therefore, the major objective of this chapter is the review of the application of MCDM methods in railway engineering. As one of the means in achieving the objectives of railways and above all the utilization of capacity are Train Control Information Systems (TCIS). Based on that, the aim of this chapter is the evaluation of the efficiency of TCIS in the improvement of railway capacity utilization through defined technical-technological indicators. The non-radial Data Envelopment Analysis (DEA) model for the evaluation of TCIS efficiency in improvement of utilization of railway capacity using the selected indicators is proposed. The proposed non-radial DEA model for TCIS efficiency evaluation in using railway capacity could be applied to an overall network or for separate parts of railway lines

    iAggregator: Multidimensional Relevance Aggregation Based on a Fuzzy Operator

    Get PDF
    International audienceRecently, an increasing number of information retrieval studies have triggered a resurgence of interest in redefining the algorithmic estimation of relevance, which implies a shift from topical to multidimensional relevance assessment. A key underlying aspect that emerged when addressing this concept is the aggregation of the relevance assessments related to each of the considered dimensions. The most commonly adopted forms of aggregation are based on classical weighted means and linear combination schemes to address this issue. Although some initiatives were recently proposed, none was concerned with considering the inherent dependencies and interactions existing among the relevance criteria, as is the case in many real-life applications. In this article, we present a new fuzzy-based operator, called iAggregator, for multidimensional relevance aggregation. Its main originality, beyond its ability to model interactions between different relevance criteria, lies in its generalization of many classical aggregation functions. To validate our proposal, we apply our operator within a tweet search task. Experiments using a standard benchmark, namely, Text REtrieval Conference Microblog,1 emphasize the relevance of our contribution when compared with traditional aggregation schemes. In addition, it outperforms state-of-the-art aggregation operators such as the Scoring and the And prioritized operators as well as some representative learning-to-rank algorithms
    corecore