3,207 research outputs found

    LifeChair: A Conductive Fabric Sensor-Based Smart Cushion for Actively Shaping Sitting Posture.

    Full text link
    The LifeChair is a smart cushion that provides vibrotactile feedback by actively sensing and classifying sitting postures to encourage upright posture and reduce slouching. The key component of the LifeChair is our novel conductive fabric pressure sensing array. Fabric sensors have been explored in the past, but a full sensing solution for embedded real world use has not been proposed. We have designed our system with commercial use in mind, and as a result, it has a high focus on manufacturability, cost-effectiveness and adaptiveness. We demonstrate the performance of our fabric sensing system by installing it into the LifeChair and comparing its posture detection accuracy with our previous study that implemented a conventional flexible printed PCB-sensing system. In this study, it is shown that the LifeChair can detect all 11 postures across 20 participants with an improved average accuracy of 98.1%, and it demonstrates significantly lower variance when interfacing with different users. We also conduct a performance study with 10 participants to evaluate the effectiveness of the LifeChair device in improving upright posture and reducing slouching. Our performance study demonstrates that the LifeChair is effective in encouraging users to sit upright with an increase of 68.1% in time spent seated upright when vibrotactile feedback is activated

    Textile moisture sensor matrix for monitoring of disabled and bed-rest patients

    Get PDF
    This paper presents the development of a moisture sensor matrix based on textile materials provided with conductive yarns. The measurement principle is based on the measurement of electrical resistance of the textile. The main purpose of this work is to support research on the prevention of pressure ulcers in people committed to bed rest or using wheelchairs. In the first stage of development, the project is studying the relation between physical parameters, exposure time and the levels of discomfort and pain experienced by the patients. In a later stage, the underlying measurement and evaluation principles will be used to develop single sensors or sensor matrixes to be connected to active patient monitoring systems able to warn in situations of excess of moisture and/or pressure (produced by sweat, open wounds, incontinence, etc.).Fundaรงรฃo para a Ciรชncia e a Tecnologia (FCT) - PTDC/SAU-BEB/68678/200

    A Review of Prosthetic Interface Stress Investigations

    Get PDF
    Over the last decade, numerous experimental and numerical analyses have been conducted to investigate the stress distribution between the residual limb and prosthetic socket of persons with lower limb amputation. The objectives of these analyses have been to improve our understanding of the residual limb/prosthetic socket system, to evaluate the influence of prosthetic design parameters and alignment variations on the interface stress distribution, and to evaluate prosthetic fit. The purpose of this paper is to summarize these experimental investigations and identify associated limitations. In addition, this paper presents an overview of various computer models used to investigate the residual limb interface, and discusses the differences and potential ramifications of the various modeling formulations. Finally, the potential and future applications of these experimental and numerical analyses in prosthetic design are presented

    Non-invasive monitoring of vital signs using recliner chair and respiratory pattern analysis

    Get PDF
    In-home monitoring has the potential to help track health changes for older adults with chronic health conditions, thereby making early treatment possible when exacerbations arise. A recliner chair is often used by older adults, even for sleeping at night, for those with breathing difficulty, neck and back problems, or other pain. Here, we present a sensor system for recliner chairs that can be used to monitor heart rate and respiration rate. The system uses two accelerometers placed strategically to capture these vital signs noninvasively and without direct contact with the body, while at same time being hidden from view. The system was tested with 45 subjects, with an average age of 78.8 years for both upright and reclined configurations of the chair. We also tested the system on 6 different types of recliner models. An accuracy of 99% for heart rate and 93% for respiratory rate was obtained. An analysis of the error distribution patterns according to age, gender and recliner configurations are considered. A validation study of a commercially available sensor, Murata SCA11H, which is primarily designed for use on the bed is tested on the chair and the results are presented in this thesis. We have also developed a measure known as the "Breathing Pattern Index" that can be useful in determining the respiratory health of the occupants on the chair. Initial studies of the effectiveness of this index and algorithm are evaluated and the results are presented. This new system and index have the potential to help in identifying very early health changes and improve health outcomes for older adults.Includes bibliographical reference

    ์ž‘์—… ๊ด€๋ จ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ ์ €๊ฐ์„ ์œ„ํ•œ ์ž‘์—… ์ž์„ธ ๋ฐ ๋™์ž‘์˜ ์ธ๊ฐ„๊ณตํ•™ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022.2. ๋ฐ•์šฐ์ง„.์œก์ฒด์  ๋ถ€ํ•˜๊ฐ€ ํฐ ์ž์„ธ ๋ฐ ๋™์ž‘์œผ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์€ ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„์— ๊ฐ€ํ•ด์ง€๋Š” ์œก์ฒด์  ๋ถ€ํ•˜์˜ ์–‘์ƒ์€ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž‘์—…์˜ ์ข…๋ฅ˜์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง„๋‹ค. ์žฅ์‹œ๊ฐ„ ์•‰์€ ์ž์„ธ๋กœ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ, ์ž‘์—…์ž์˜ ๊ทผ์œก, ์ธ๋Œ€์™€ ๊ฐ™์€ ์—ฐ์กฐ์ง์— ๊ณผ๋„ํ•œ ๋ถ€ํ•˜๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๋ชฉ, ํ—ˆ๋ฆฌ ๋“ฑ ๋‹ค์–‘ํ•œ ์‹ ์ฒด ๋ถ€์œ„์—์„œ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ์ฆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์ฐฉ์ขŒ ์‹œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์ž‘์—…์ž์˜ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ , ์ด์— ๋Œ€ํ•œ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์ด ํ•„์š”ํ•˜๋‹ค. ๋“ค๊ธฐ ์ž‘์—…๊ณผ ๊ฐ™์€ ๋™์ ์ธ ์›€์ง์ž„์ด ํฌํ•จ๋œ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒฝ์šฐ, ์ž‘์—…์ž์˜ ์ฒด์ค‘์ด ์‹ ์ฒด์  ๋ถ€ํ•˜์— ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ์ „์„ธ๊ณ„์ ์ธ ๋น„๋งŒ์˜ ์œ ํ–‰์œผ๋กœ ์ธํ•ด ๋งŽ์€ ์ž‘์—…์ž๋“ค์ด ์ฒด์ค‘ ์ฆ๊ฐ€๋ฅผ ๊ฒช๊ณ  ์žˆ๊ณ , ๋“ค๊ธฐ ์ž‘์—…๊ณผ ๊ฐ™์€ ๋™์ ์ธ ์ž‘์—…์—์„œ ๋น„๋งŒ์€ ์‹ ์ฒด์  ๋ถ€ํ•˜์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๋น„๋งŒ๊ณผ ์ž‘์—… ๊ด€๋ จ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์€ ์ž ์žฌ์ ์ธ ์—ฐ๊ด€์„ฑ์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ , ๋น„๋งŒ์ด ๋“ค๊ธฐ ์ž‘์—…์— ๋ฏธ์น˜๋Š” ์ƒ์ฒด์—ญํ•™์  ์˜ํ–ฅ์„ ๋…ผ์˜ํ•  ํ•„์š”์„ฑ์ด ์žˆ๋‹ค. ์ž‘์—…์žฅ์—์„œ์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ˆ˜ํ–‰๋˜์–ด ์™”์ง€๋งŒ, ์ž‘์—… ์‹œ์Šคํ…œ์˜ ์ธ๊ฐ„๊ณตํ•™์  ์„ค๊ณ„ ์ธก๋ฉด์—์„œ ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์žฅ์‹œ๊ฐ„ ์˜์ž์— ์•‰์•„ ์ •์ ์ธ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž‘์—…์ž์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์„ ์ €๊ฐํ•˜๊ธฐ ์œ„ํ•œ ์œ ๋งํ•œ ๋ฐฉ๋ฒ• ์ค‘ ํ•˜๋‚˜๋กœ, ์ž‘์—…์ž์˜ ์ž์„ธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์ด ์ œ์•ˆ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ์€ ์ž‘์—…์ž๊ฐ€ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ๋‚ฎ์€ ์ž์„ธ๋ฅผ ์ž‘์—… ์‹œ๊ฐ„ ๋™์•ˆ ์œ ์ง€ํ•˜๋„๋ก ๋•๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๊ธฐ์กด์˜ ๋Œ€๋ถ€๋ถ„์˜ ์ž์„ธ ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์—์„œ๋Š” ๋ถ„๋ฅ˜ํ•  ์ž์„ธ๋ฅผ ์ •์˜ํ•˜๋Š” ๊ณผ์ •์—์„œ ์ธ๊ฐ„๊ณตํ•™์  ๋ฌธํ—Œ์ด ๊ฑฐ์˜ ๊ณ ๋ ค๋˜์ง€ ์•Š์•˜๊ณ , ์‚ฌ์šฉ์ž๊ฐ€ ์‹ค์ œ๋กœ ํ™œ์šฉํ•˜๊ธฐ์—๋Š” ์—ฌ๋Ÿฌ ํ•œ๊ณ„์ ๋“ค์ด ์กด์žฌํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—…์˜ ๊ฒฝ์šฐ, ์ฒด์งˆ๋Ÿ‰ ์ง€์ˆ˜(BMI) 40 ์ด์ƒ์˜ ์ดˆ๊ณ ๋„ ๋น„๋งŒ ์ž‘์—…์ž์˜ ๋™์ž‘ ํŒจํ„ด์„ ๋…ผ์˜ํ•œ ์—ฐ๊ตฌ๋Š” ๊ฑฐ์˜ ์ฐพ์•„๋ณผ ์ˆ˜ ์—†์—ˆ๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ๋“ค๊ธฐ ์ž‘์—… ์กฐ๊ฑด ํ•˜์—์„œ ์ „์‹  ๊ด€์ ˆ๋“ค์˜ ์›€์ง์ž„์„ ์ƒ์ฒด์—ญํ•™์  ์ธก๋ฉด์—์„œ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ์˜ ์—ฐ๊ตฌ ๋ชฉ์ ์€ 1) ๋‹ค์–‘ํ•œ ์„ผ์„œ ์กฐํ•ฉ์„ ํ™œ์šฉํ•œ ์‹ค์‹œ๊ฐ„ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ , 2) ๋“ค๊ธฐ ์ž‘์—… ์‹œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ด ๊ฐœ๋ณ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋“ค๊ธฐ ๋™์ž‘ ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ดํ•ดํ•˜์—ฌ, ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์ž‘์—…์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์—ฐ๊ตฌ ๋ชฉ์ ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์Œ์˜ ๋‘ ๊ฐ€์ง€ ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ฐฉ์ขŒ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๋Š” ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์€ ๊ฐ๊ฐ ์—ฌ์„ฏ ๊ฐœ์˜ ๊ฑฐ๋ฆฌ ์„ผ์„œ์™€ ์••๋ ฅ ์„ผ์„œ๋ฅผ ์กฐํ•ฉํ•˜์—ฌ ๊ตฌ์„ฑ๋˜์—ˆ๋‹ค. ์ฐฉ์ขŒ ๊ด€๋ จํ•œ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์— ๋Œ€ํ•ด ๋ฌธํ—Œ ์กฐ์‚ฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ฒฐ์ •๋œ ์ž์„ธ๋“ค์— ๋Œ€ํ•ด ์„œ๋ฅธ ์—ฌ์„ฏ ๋ช…์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์—์„œ ์ž์„ธ๋ฅผ ๋ถ„๋ฅ˜ํ•˜๊ธฐ ์œ„ํ•ด kNN ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜์˜€๊ณ , ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹จ์ผ ์ข…๋ฅ˜์˜ ์„ผ์„œ๋กœ ๊ตฌ์„ฑ๋œ ๊ธฐ์ค€ ๋ชจ๋ธ๋“ค๊ณผ ๋น„๊ต๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ถ„๋ฅ˜ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ, ์„ผ์„œ๋ฅผ ์กฐํ•ฉํ•œ ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์ด ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋“ค๊ธฐ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•  ๋•Œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ด ๊ฐœ๋ณ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋™์ž‘ ํŒจํ„ด์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ์…˜ ์บก์ณ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์‹คํ—˜์—๋Š” ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜ ์ด๋ ฅ์ด ์—†๋Š” ์„œ๋ฅธ ๋‹ค์„ฏ ๋ช…์ด ์ฐธ์—ฌํ•˜์˜€๋‹ค. ์ˆ˜์ง‘๋œ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ฃผ์š” ๊ด€์ ˆ(๋ฐœ๋ชฉ, ๋ฌด๋ฆŽ, ์—‰๋ฉ์ด, ํ—ˆ๋ฆฌ, ์–ด๊นจ, ํŒ”๊ฟˆ์น˜) ๋ณ„ ์šด๋™์—ญํ•™์  ๋ณ€์ˆ˜๋“ค๊ณผ, ๋“ค๊ธฐ ๋™์ž‘์˜ ํŒจํ„ด์„ ํ‘œํ˜„ํ•˜๋Š” ๋™์ž‘ ์ง€์ˆ˜๋“ค์„ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—… ์กฐ๊ฑด๊ณผ ๋น„๋งŒ ์ˆ˜์ค€์— ๋”ฐ๋ผ, ๋Œ€๋ถ€๋ถ„์˜ ๋ณ€์ˆ˜์—์„œ ํ†ต๊ณ„์ ์œผ๋กœ ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์˜€๋‹ค. ์ „์ฒด์ ์œผ๋กœ ๋น„๋งŒ์ธ์€ ์ •์ƒ์ฒด์ค‘์ธ์— ๋น„ํ•ด ๋‹ค๋ฆฌ ๋ณด๋‹ค ํ—ˆ๋ฆฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋“ค๊ธฐ ์ž‘์—…์„ ์ˆ˜ํ–‰ํ•˜์˜€๊ณ , ๋™์ž‘ ์ˆ˜ํ–‰ ์‹œ ์ƒ๋Œ€์ ์œผ๋กœ ์ ์€ ๊ด€์ ˆ ๊ฐ๋„ ๋ณ€ํ™”์™€ ๋Š๋ฆฐ ์›€์ง์ž„์„ ๋ณด์˜€๋‹ค. ๋“ค๊ธฐ ์ž‘์—…์—์„œ ๋ฐ•์Šค์˜ ์ด๋™์— ๊ฐœ๋ณ„ ๊ด€์ ˆ์ด ๊ธฐ์—ฌํ•˜๋Š” ๋น„์œจ๋„ ์ •์ƒ์ฒด์ค‘์ธ๊ณผ ๋น„๋งŒ์ธ์€ ๋‹ค๋ฅธ ํŒจํ„ด์„ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜์˜ ์‹ ์ฒด์  ๋ถ€ํ•˜์— ๋…ธ์ถœ๋œ ์ž‘์—…์ž๋“ค์˜ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ €๊ฐํ•  ์ˆ˜ ์žˆ๊ณ , ๊ถ๊ทน์ ์œผ๋กœ ์—…๋ฌด์˜ ์ƒ์‚ฐ์„ฑ๊ณผ ๊ฐœ์ธ์˜ ๊ฑด๊ฐ•์„ ์ œ๊ณ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๊ฐœ๋ฐœ๋œ ์Šค๋งˆํŠธ ์˜์ž ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ์ž์„ธ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์˜ ๋‹จ์ ๋“ค์„ ์™„ํ™”ํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์€ ์ €๋ ดํ•œ ์†Œ์ˆ˜์˜ ์„ผ์„œ๋งŒ์„ ํ™œ์šฉํ•˜์—ฌ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์ธก๋ฉด์—์„œ ์ค‘์š”ํ•œ ์ž์„ธ๋“ค์„ ๋†’์€ ์ •ํ™•๋„๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ž์„ธ ๋ถ„๋ฅ˜ ์‹œ์Šคํ…œ์€ ์ž‘์—…์ž์—๊ฒŒ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ž์„ธ ํ”ผ๋“œ๋ฐฑ์„ ์ œ๊ณตํ•˜์—ฌ, ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์ด ๋‚ฎ์€ ์ž์„ธ๋ฅผ ์œ ์ง€ํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋™์ ์ธ ์ž‘์—… ์‹œ ์ดˆ๊ณ ๋„ ๋น„๋งŒ์œผ๋กœ ์ธํ•œ ์ž ์žฌ์ ์ธ ๊ทผ๊ณจ๊ฒฉ๊ณ„ ์งˆํ™˜์˜ ์œ„ํ—˜์„ฑ์„ ์ดํ•ดํ•˜๋Š” ๋ฐ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ดˆ๊ณ ๋„ ๋น„๋งŒ์ธ๊ณผ ์ •์ƒ์ฒด์ค‘์ธ ๊ฐ„ ๊ด€์ ˆ์˜ ์›€์ง์ž„๊ณผ ๋™์ž‘์˜ ์ฐจ์ด๋ฅผ ์ดํ•ดํ•˜์—ฌ, ๋น„๋งŒ์„ ๊ณ ๋ คํ•œ ์ธ๊ฐ„๊ณตํ•™์  ์ž‘์—…์žฅ ์„ค๊ณ„์™€ ๋™์ž‘ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.Working in stressful postures and movements increases the risk of work-related musculoskeletal disorders (WMSDs). The physical stress on a workerโ€™s musculoskeletal system depends on the type of work task. In the case of sedentary work, stressful sitting postures for prolonged durations could increase the load on soft connective tissues such as muscles and ligaments, resulting in the incidence of WMSDs. Therefore, to reduce the WMSDs, it is necessary to monitor a workerโ€™s sitting posture and additionally provide ergonomic interventions. When the worker performs a task that involves dynamic movements, such as manual lifting, the workerโ€™s own body mass affects the physical stress on the musculoskeletal system. In the global prevalence of obesity in the workforce, an increase in the body weight of the workers could adversely affect the musculoskeletal system during the manual lifting task. Therefore, obesity could be associated with the development of WMSDs, and the impacts of obesity on workersโ€™ movement during manual lifting need to be examined. Despite previous research efforts to prevent WMSDs, there still exist research gaps concerning ergonomics design of work systems. For sedentary workers, a promising solution to reduce the occurrence of WMSDs is the development of a system capable of monitoring and classifying a seated worker's posture in real-time, which could be utilized to provide feedback to the worker to maintain a posture with a low-risk of WMSDs. However, the previous studies in relation to such a posture monitoring system lacked a review of the ergonomics literature to define posture categories for classification, and had some limitations in widespread use and user acceptance. In addition, only a few studies related to obesity impacts on manual lifting focused on severely obese population with a body mass index (BMI) of 40 or higher, and, analyzed lifting motions in terms of multi-joint movement organization or at the level of movement technique. Therefore, the purpose of this study was to: 1) develop a sensor-embedded posture classification system that is capable of classifying an instantaneous sitting posture as one of the posture categories discussed in the ergonomics literature while not suffering from the limitations of the previous system, and, 2) identify the impacts of severe obesity on joint kinematics and movement technique during manual lifting under various task conditions. To accomplish the research objectives, two major studies were conducted. In the study on the posture classification system, a novel smart chair system was developed to monitor and classify a workerโ€™s sitting postures in real-time. The smart chair system was a mixed sensor system utilizing six pressure sensors and six infrared reflective distance sensors in combination. For a total of thirty-six participants, data collection was conducted on posture categories determined based on an analysis of the ergonomics literature on sitting postures and sitting-related musculoskeletal problems. The mixed sensor system utilized a kNN algorithm for posture classification, and, was evaluated in posture classification performance in comparison with two benchmark systems that utilized only a single type of sensors. The mixed sensor system yielded significantly superior classification performance than the two benchmark systems. In the study on the manual lifting task, optical motion capture was conducted to examine differences in joint kinematics and movement technique between severely obese and non-obese groups. A total of thirty-five subjects without a history of WMSDs participated in the experiment. The severely obese and non-obese groups show significant differences in most joint kinematics of the ankle, knee, hip, spine, shoulder, and elbow. There were also significant differences between the groups in the movement technique index, which represents a motion in terms of the relative contribution of an individual joint degree of freedom to the box trajectory in a manual lifting task. Overall, the severely obese group adopted the back lifting technique (stoop) rather than the leg lifting technique (squat), and showed less joint range of excursions and slow movements compared to the non-obese group. The findings mentioned above could be utilized to reduce the risk of WMSDs among workers performing various types of tasks, and, thus, improve work productivity and personal health. The mixed sensor system developed in this study was free from the limitations of the previous posture monitoring systems, and, is low-cost utilizing only a small number of sensors; yet, it accomplishes accurate classification of postures relevant to the ergonomic analyses of seated work tasks. The mixed sensor system could be utilized for various applications including the development of a real-time posture feedback system for preventing sitting-related musculoskeletal disorders. The findings provided in the manual lifting study would be useful in understanding the potential risk of WMSDs for severely obese workers. Differences in joint kinematics and movement techniques between severely obese and non-obese groups provide practical implications concerning the ergonomic design of work tasks and workspace layout.Chapter 1. Introduction 1 1.1 Research Background 1 1.2 Research Objectives 5 1.3 Dissertation Outline 6 Chapter 2. Literature Review 8 2.1 Work-related Musculoskeletal Disorders Among Sedentary Workers 8 2.1.1 Relationship Between Sitting Postures and Musculoskeletal Disorders 8 2.1.2 Systems for Monitoring and Classifying a Seated Worker's Postures 10 2.2 Impacts of Obesity on Manual Works 22 2.2.1 Impacts of Obesity on Work Capacity 22 2.2.2 Impacts of Obesity on Joint Kinematics and Biomechanical Demands 24 Chapter 3. Developing and Evaluating a Mixed Sensor Smart Chair System for Real-time Posture Classification: Combining Pressure and Distance Sensors 27 3.1 Introduction 27 3.2 Materials and Methods 33 3.2.1 Predefined posture categories for the mixed sensor system 33 3.2.2 Physical construction of the mixed sensor system 36 3.2.3 Posture Classifier Design for the Mixed Sensor System 38 3.2.4 Data Collection for Training and Testing the Posture Classifier of the Mixed Sensor System 41 3.2.5 Comparative Evaluation of Posture Classification Performance 43 3.3 Results 46 3.3.1 Model Parameters and Features 46 3.3.2 Posture Classification Performance 47 3.4 Discussion 50 Chapter 4. Severe Obesity Impacts on Joint Kinematics and Movement Technique During Manual Load Lifting 57 4.1 Introduction 57 4.2 Methods 61 4.2.1 Participants 61 4.2.2 Experimental Task 61 4.2.3 Experimental Procedure 64 4.2.4 Data Processing 65 4.2.5 Experimental Variables 67 4.2.6 Statistical Analysis 71 4.3 Results 72 4.3.1 Kinematic Variables 72 4.3.2 Movement Technique Indexes 83 4.4 Discussion 92 Chapter 5. Conclusion 102 5.1 Summary 102 5.2 Implications 105 5.3 Limitations and Future Directions 106 Bibliography 108 ๊ตญ๋ฌธ์ดˆ๋ก 133๋ฐ•

    Pametne uredske stolice sa senzorima za otkrivanje poloลพaja i navika sjedenja โ€“ pregled literature

    Get PDF
    The health consequences of prolonged sitting in the office and other work chairs have recently been tried to be alleviated or prevented by the application of modern technologies. Smart technologies and sensors are installed in different parts of office chairs, which enables monitoring of seating patterns and prevents positions that potentially endanger the health of users. The aim of this paper is to provide an overview of previous research in the field of the application of smart technologies and sensors built into office and other types of chairs in order to prevent diseases. The articles published in the period 2010-2020 and indexed in WoS CC, Scopus, and IEEE Xplore databases, with the keywords โ€œsmart chairโ€ and โ€œsensor chairโ€ were analysed. 15 articles were processed, with their research being based on the use of different types of sensors that determine the contact pressures between the userโ€™s body and stool parts and recognise different body positions when sitting, which can prevent negative health consequences. Analysed papers prove that the use of smart technology and a better understanding of sitting, using various sensors and applications that read body pressure and determine the current body position, can act as preventive health care by detecting proper heart rate and beats per minute, the activity of individual muscle groups, proper breathing and estimates of blood oxygen levels. In the future research, it is necessary to compare different types of sensors, methods used and the results obtained in order to determine which of them are most suitable for the future development of seating furniture for work.Posljedice dugotrajnog sjedenja na uredskim i drugim radnim stolicama u posljednje se vrijeme pokuลกavaju ublaลพiti ili sprijeฤiti primjenom suvremenih tehnologija. U razliฤite dijelove uredskih stolica ugraฤ‘uju se pametne tehnologije i senzori, ลกto omoguฤ‡uje praฤ‡enje rasporeda sjedenja i izbjegavanje poloลพaja koji potencijalno ugroลพavaju zdravlje korisnika. Cilj ovog rada jest davanje pregleda dosadaลกnjih istraลพivanja u podruฤju primjene suvremenih pametnih tehnologija i senzora ugraฤ‘enih u uredske i ostale vrste stolica radi prevencije obolijevanja korisnika. Analizirani su ฤlanci objavljeni u razdoblju od 2010. do 2020. i indeksirani su u bazama podataka WoS CC, Scopus i IEEE Xplore, a izdvojeni su prema kljuฤnim rijeฤima pametna stolica i senzorska stolica. Obraฤ‘eno je 15 ฤlanaka u kojima su se istraลพivanja temeljila na primjeni razliฤitih vrsta senzora koji odreฤ‘uju kontaktne tlakove izmeฤ‘u korisnikova tijela i dijelova stolice te raspoznaju razliฤite poloลพaje tijela pri sjedenju, ฤime se mogu prevenirati negativne posljedice za zdravlje. U analiziranim istraลพivanjima autori su dokazali da primjena pametne tehnologije i bolje razumijevanje sjedenja uporabom razliฤitih senzora i aplikacija kojima se oฤitava pritisak tijela i odreฤ‘uje njegov trenutaฤni poloลพaj moลพe preventivno djelovati zahvaljujuฤ‡i praฤ‡enju rada srca i broja otkucaja u minuti, aktivnosti pojedinih miลกiฤ‡nih skupina, pravilnog disanja, procjene razine kisika u krvi i sl. U buduฤ‡im istraลพivanjima potrebno je usporediti razliฤite tipove senzora, primijenjene metode i dobivene rezultate kako bi se uoฤilo koji su od njih najprikladniji za buduฤ‡i razvoj radnog namjeลกtaja za sjedenje

    Intelligent Sitting Posture Classifier for Wheelchair Users

    Get PDF
    In recent years, there has been growing interest in postural monitoring while seated, thus preventing the appearance of ulcers and musculoskeletal problems in the long term. To date, postural control has been carried out by means of subjective questionnaires that do not provide continuous and quantitative information. For this reason, it is necessary to carry out a monitoring that allows to determine not only the postural status of wheelchair users, but also to infer the evolution or anomalies associated with a specific disease. Therefore, this paper proposes an intelligent classifier based on a multilayer neural network for the classification of sitting postures of wheelchair users. The posture database was generated based on data collected by a novel monitoring device composed of force resistive sensors. A training and hyperparameter selection methodology has been used based on the idea of using a stratified K-Fold in weight groups strategy. This allows the neural network to acquire a greater capacity for generalization, thus allowing, unlike other proposed models, to achieve higher success rates not only in familiar subjects but also in subjects with physical complexions outside the standard. In this way, the system can be used to support wheelchair users and healthcare professionals, helping them to automatically monitor their posture, regardless physical complexions.This work was supported in part by the Ministry of Science and Innovation-StateResearch Agency/Project funded by MCIN/State Research Agency(AEI)/10.13039/501100011033 under Grant PID2020-112667RB-I00,in part by the Basque Government under Grant IT1726-22, and in part by the Predoctoral Contracts of the Basque Government under Grant PRE-2021-1-0001 and Grant PRE-2021-1-021
    • โ€ฆ
    corecore