22,329 research outputs found

    Coarse-Graining Auto-Encoders for Molecular Dynamics

    Full text link
    Molecular dynamics simulations provide theoretical insight into the microscopic behavior of materials in condensed phase and, as a predictive tool, enable computational design of new compounds. However, because of the large temporal and spatial scales involved in thermodynamic and kinetic phenomena in materials, atomistic simulations are often computationally unfeasible. Coarse-graining methods allow simulating larger systems, by reducing the dimensionality of the simulation, and propagating longer timesteps, by averaging out fast motions. Coarse-graining involves two coupled learning problems; defining the mapping from an all-atom to a reduced representation, and the parametrization of a Hamiltonian over coarse-grained coordinates. Multiple statistical mechanics approaches have addressed the latter, but the former is generally a hand-tuned process based on chemical intuition. Here we present Autograin, an optimization framework based on auto-encoders to learn both tasks simultaneously. Autograin is trained to learn the optimal mapping between all-atom and reduced representation, using the reconstruction loss to facilitate the learning of coarse-grained variables. In addition, a force-matching method is applied to variationally determine the coarse-grained potential energy function. This procedure is tested on a number of model systems including single-molecule and bulk-phase periodic simulations.Comment: 8 pages, 6 figure

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Molecular Model of Dynamic Social Network Based on E-mail communication

    Get PDF
    In this work we consider an application of physically inspired sociodynamical model to the modelling of the evolution of email-based social network. Contrary to the standard approach of sociodynamics, which assumes expressing of system dynamics with heuristically defined simple rules, we postulate the inference of these rules from the real data and their application within a dynamic molecular model. We present how to embed the n-dimensional social space in Euclidean one. Then, inspired by the Lennard-Jones potential, we define a data-driven social potential function and apply the resultant force to a real e-mail communication network in a course of a molecular simulation, with network nodes taking on the role of interacting particles. We discuss all steps of the modelling process, from data preparation, through embedding and the molecular simulation itself, to transformation from the embedding space back to a graph structure. The conclusions, drawn from examining the resultant networks in stable, minimum-energy states, emphasize the role of the embedding process projecting the non–metric social graph into the Euclidean space, the significance of the unavoidable loss of information connected with this procedure and the resultant preservation of global rather than local properties of the initial network. We also argue applicability of our method to some classes of problems, while also signalling the areas which require further research in order to expand this applicability domain
    • …
    corecore