221 research outputs found

    A semi-induced subgraph characterization of upper domination perfect graphs

    Get PDF
    Let β(G) and Γ(G) be the independence number and the upper domination number of a graph G, respectively. A graph G is called Γ-perfect if β(H) = Γ(H), for every induced subgraph H of G. The class of Γ-perfect graphs generalizes such well-known classes of graphs as strongly perfect graphs, absorbantly perfect graphs, and circular arc graphs. In this article, we present a characterization of Γ-perfect graphs in terms of forbidden semi-induced subgraphs. Key roles in the characterization are played by the odd prism and the even Möbius ladder, where the prism and the Möbius ladder are well-known 3-regular graphs [2]. Using the semi-induced subgraph characterization, we obtain a characterization of K 1.3-free Γ-perfect graphs in terms of forbidden induced subgraphs. © 1999 John Wiley & Sons, Inc

    The Price of Connectivity for Vertex Cover

    Full text link
    The vertex cover number of a graph is the minimum number of vertices that are needed to cover all edges. When those vertices are further required to induce a connected subgraph, the corresponding number is called the connected vertex cover number, and is always greater or equal to the vertex cover number. Connected vertex covers are found in many applications, and the relationship between those two graph invariants is therefore a natural question to investigate. For that purpose, we introduce the {\em Price of Connectivity}, defined as the ratio between the two vertex cover numbers. We prove that the price of connectivity is at most 2 for arbitrary graphs. We further consider graph classes in which the price of connectivity of every induced subgraph is bounded by some real number tt. We obtain forbidden induced subgraph characterizations for every real value t3/2t \leq 3/2. We also investigate critical graphs for this property, namely, graphs whose price of connectivity is strictly greater than that of any proper induced subgraph. Those are the only graphs that can appear in a forbidden subgraph characterization for the hereditary property of having a price of connectivity at most tt. In particular, we completely characterize the critical graphs that are also chordal. Finally, we also consider the question of computing the price of connectivity of a given graph. Unsurprisingly, the decision version of this question is NP-hard. In fact, we show that it is even complete for the class Θ2P=PNP[log]\Theta_2^P = P^{NP[\log]}, the class of decision problems that can be solved in polynomial time, provided we can make O(logn)O(\log n) queries to an NP-oracle. This paves the way for a thorough investigation of the complexity of problems involving ratios of graph invariants.Comment: 19 pages, 8 figure

    On αrγs(k)-perfect graphs

    Get PDF
    AbstractFor some integer k⩾0 and two graph parameters π and τ, a graph G is called πτ(k)-perfect, if π(H)−τ(H)⩽k for every induced subgraph H of G. For r⩾1 let αr and γr denote the r-(distance)-independence and r-(distance)-domination number, respectively. In (J. Graph Theory 32 (1999) 303–310), I. Zverovich gave an ingenious complete characterization of α1γ1(k)-perfect graphs in terms of forbidden induced subgraphs. In this paper we study αrγs(k)-perfect graphs for r,s⩾1. We prove several properties of minimal αrγs(k)-imperfect graphs. Generalizing Zverovich's main result in (J. Graph Theory 32 (1999) 303–310), we completely characterize α2r−1γr(k)-perfect graphs for r⩾1. Furthermore, we characterize claw-free α2γ2(k)-perfect graphs

    Recognition of some perfectly orderable graph classes

    Get PDF
    AbstractThis paper presents new algorithms for recognizing several classes of perfectly orderable graphs. Bipolarizable and P4-simplicial graphs are recognized in O(n3.376) time, improving the previous bounds of O(n4) and O(n5), respectively. Brittle and semi-simplicial graphs are recognized in O(n3) time using a randomized algorithm, and O(n3log2n) time if a deterministic algorithm is required. The best previous time bound for recognizing these classes of graphs is O(m2). Welsh–Powell opposition graphs are recognized in O(n3) time, improving the previous bound of O(n4). HHP-free graphs and maxibrittle graphs are recognized in O(mn) and O(n3.376) time, respectively
    corecore