342 research outputs found

    Simulation of all-scale atmospheric dynamics on unstructured meshes

    Get PDF
    The advance of massively parallel computing in the nineteen nineties and beyond encouraged finer grid intervals in numerical weather-prediction models. This has improved resolution of weather systems and enhanced the accuracy of forecasts, while setting the trend for development of unified all-scale atmospheric models. This paper first outlines the historical background to a wide range of numerical methods advanced in the process. Next, the trend is illustrated with a technical review of a versatile nonoscillatory forward-in-time finite-volume (NFTFV) approach, proven effective in simulations of atmospheric flows from small-scale dynamics to global circulations and climate. The outlined approach exploits the synergy of two specific ingredients: the MPDATA methods for the simulation of fluid flows based on the sign-preserving properties of upstream differencing; and the flexible finite-volume median-dual unstructured-mesh discretisation of the spatial differential operators comprising PDEs of atmospheric dynamics. The paper consolidates the concepts leading to a family of generalised nonhydrostatic NFTFV flow solvers that include soundproof PDEs of incompressible Boussinesq, anelastic and pseudo-incompressible systems, common in large-eddy simulation of small- and meso-scale dynamics, as well as all-scale compressible Euler equations. Such a framework naturally extends predictive skills of large-eddy simulation to the global atmosphere, providing a bottom-up alternative to the reverse approach pursued in the weather-prediction models. Theoretical considerations are substantiated by calculations attesting to the versatility and efficacy of the NFTFV approach. Some prospective developments are also discussed

    Anelastic Versus Fully Compressible Turbulent Rayleigh-B\'enard Convection

    Full text link
    Numerical simulations of turbulent Rayleigh-B\'enard convection in an ideal gas, using either the anelastic approximation or the fully compressible equations, are compared. Theoretically, the anelastic approximation is expected to hold in weakly superadiabatic systems with ϵ=ΔT/Tr1\epsilon = \Delta T / T_r \ll 1, where ΔT\Delta T denotes the superadiabatic temperature drop over the convective layer and TrT_r the bottom temperature. Using direct numerical simulations, a systematic comparison of anelastic and fully compressible convection is carried out. With decreasing superadiabaticity ϵ\epsilon, the fully compressible results are found to converge linearly to the anelastic solution with larger density contrasts generally improving the match. We conclude that in many solar and planetary applications, where the superadiabaticity is expected to be vanishingly small, results obtained with the anelastic approximation are in fact more accurate than fully compressible computations, which typically fail to reach small ϵ\epsilon for numerical reasons. On the other hand, if the astrophysical system studied contains ϵO(1)\epsilon\sim O(1) regions, such as the solar photosphere, fully compressible simulations have the advantage of capturing the full physics. Interestingly, even in weakly superadiabatic regions, like the bulk of the solar convection zone, the errors introduced by using artificially large values for ϵ\epsilon for efficiency reasons remain moderate. If quantitative errors of the order of 10%10\% are acceptable in such low ϵ\epsilon regions, our work suggests that fully compressible simulations can indeed be computationally more efficient than their anelastic counterparts.Comment: 24 pages, 9 figure

    The Sun's Supergranulation

    Get PDF
    Supergranulation is a fluid-dynamical phenomenon taking place in the solar photosphere, primarily detected in the form of a vigorous cellular flow pattern with a typical horizontal scale of approximately 30--35~megameters, a dynamical evolution time of 24--48~h, a strong 300--400~m/s (rms) horizontal flow component and a much weaker 20--30~m/s vertical component. Supergranulation was discovered more than sixty years ago, however, explaining its physical origin and most important observational characteristics has proven extremely challenging ever since, as a result of the intrinsic multiscale, nonlinear dynamical complexity of the problem concurring with strong observational and computational limitations. Key progress on this problem is now taking place with the advent of 21st-century supercomputing resources and the availability of global observations of the dynamics of the solar surface with high spatial and temporal resolutions. This article provides an exhaustive review of observational, numerical and theoretical research on supergranulation, and discusses the current status of our understanding of its origin and dynamics, most importantly in terms of large-scale nonlinear thermal convection, in the light of a selection of recent findings.Comment: Major update of 2010 Liv. Rev. Sol. Phys. review. Addresses many new theoretical, numerical and observational developments. All sections, including discussion, revised extensively. Also includes previously unpublished results on nonlinear dynamics of convection in large domains, and lagrangian transport at the solar surfac

    Benchmarking in a rotating annulus: a comparative experimental and numerical study of baroclinic wave dynamics

    Full text link
    The differentially heated rotating annulus is a widely studied tabletop-size laboratory model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The radial temperature difference in the cylindrical tank and its rotation rate can be set so that the isothermal surfaces in the bulk tilt, leading to the formation of baroclinic waves. The signatures of these waves at the free water surface have been analyzed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions. In parallel to the laboratory experiments, five groups of the MetStr\"om collaboration have conducted numerical simulations in the same parameter regime using different approaches and solvers, and applying different initial conditions and perturbations. The experimentally and numerically obtained baroclinic wave patterns have been evaluated and compared in terms of their dominant wave modes, spatio-temporal variance properties and drift rates. Thus certain ``benchmarks'' have been created that can later be used as test cases for atmospheric numerical model validation

    The Effects of Rotation on the Evolution of Rising Omega-loops in a Stratified Model Convection Zone

    Get PDF
    We present three-dimensional MHD simulations of buoyant magnetic flux tubes that rise through a stratified model convection zone in the presence of solar rotation. The equations of MHD are solved in the anelastic approximation, and the results are used to determine the effects of solar rotation on the dynamic evolution an Omega-loop. We find that the Coriolis force significantly suppresses the degree of fragmentation at the apex of the loop during its ascent toward the photosphere. If the initial axial field strength of the tube is reduced, then, in the absence of forces due to convective motions, the degree of apex fragmentation is also reduced. We show that the Coriolis force slows the rise of the tube, and induces a retrograde flow in both the magnetized and unmagnetized plasma of an emerging active region. Observationally, we predict that this flow will appear to originate at the leading polarity, and will terminate at the trailing polarity.Comment: 25 pages, 8 figures, ApJ in pres

    MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver

    Get PDF
    We present MAESTROeX, a massively parallel solver for low Mach number astrophysical flows. The underlying low Mach number equation set allows for efficient, long-time integration for highly subsonic flows compared to compressible approaches. MAESTROeX is suitable for modeling full spherical stars as well as well as planar simulations of dynamics within localized regions of a star, and can robustly handle several orders of magnitude of density and pressure stratification. Previously, we have described the development of the predecessor of MAESTROeX, called MAESTRO, in a series of papers. Here, we present a new, greatly simplified temporal integration scheme that retains the same order of accuracy as our previous approaches. We also explore the use of alternative spatial mapping of the one-dimensional base state onto the full Cartesian grid. The code leverages the new AMReX software framework for block-structured adaptive mesh refinement (AMR) applications, allowing for scalability to large fractions of leadership-class machines. Using our previous studies on the convective phase of single-degenerate progenitor models of Type Ia supernovae as a guide, we characterize the performance of the code and validate the new algorithmic features. Like MAESTRO, MAESTROeX is fully open source
    corecore