4,405 research outputs found

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure

    Preparation and control of intelligent automation systems

    Get PDF
    In the automation systems of tomorrow, it is likely that the devices included have various degrees of autonomy, and include advanced algorithms for perception and control. Human operators will be expected to work together with collaborative robots as well as with roaming robots for material handling.The volatile nature of the environment of such intelligent automation systems lead to an enormous amount of possible situations that can arise and which need to be suitably handled. This complexity makes development of control systems for intelligent automation systems difficult using traditional methods.As an alternative, this thesis presents a model-based control framework, which uses a combination of formal specification and automated planning. The proposed framework allows for defining the intentions of the automation system on a high level, which enables decisions that influence when things should occur to be modeled using logical constraints, rather than programming. To achieve a modular framework, low level, reusable, resource models are composed by 1) formal specification to ensure safety and 2) applying an abstraction called an operation, which couples the reusable resources to the intentions of the system. By planning also the resources\u27 detailed actions, the operations can, when possible, be completed regardless of the resources\u27 current state. This eases error-recovery, as resources do not have to be reset when an error occurs.Additionally, the thesis proposes an iterative and interactive workflow for integrating the proposed model-based control framework into a virtual preparation process, using computer-based simulation as a tool for validating formal specifications. The control framework allows for adding new constraints to a running system, enabling an efficient and interactive preparation process.The framework has been applied to a use case from final assembly, which features human-robot collaboration. Experimental results on the ability to handle unforeseen errors and planning performance are presented

    Development of an Industry 4.0 Demonstrator Using Sequence Planner and ROS2

    Get PDF
    In many modern automation solutions, manual off-line programming is being replaced by online algorithms that dynamically perform tasks based on the state of the environment. Complexities of such systems are pushed even further with collaboration among robots and humans, where intelligent machines and learning algorithms are replacing more traditional automation solutions. This chapter describes the development of an industrial demonstrator using a control infrastructure called Sequence Planner (SP), and presents some lessons learned during development. SP is based on ROS2 and it is designed to aid in handling the increased complexity of these new systems using formal models and online planning algorithms to coordinate the actions of robots and other devices. During development, SP can auto generate ROS nodes and message types as well as support continuous validation and testing. SP is also designed with the aim to handle traditional challenges of automation software development such as safety, reliability and efficiency. In this chapter, it is argued that ROS2 together with SP could be an enabler of intelligent automation for the next industrial revolution

    Knowledge Capture in CMM Inspection Planning: Barriers and Challenges

    Get PDF
    Coordinate Measuring Machines (CMM) have been widely used as a means of evaluating product quality and controlling quality manufacturing processes. Many techniques have been developed to facilitate the generation of CMM measurement plans. However, there are major gaps in the understanding of planning such strategies. This significant lack of explicitly available knowledge on how experts prepare plans and carry out measurements slows down the planning process, leading to the repetitive reinvention of new plans while preventing the automation or even semi-automation of the process. The objectives of this paper are twofold: (i) to provide a review of the existing inspection planning systems and discuss the barriers and challenges, especially from the aspect of knowledge capture and formalization; and (ii) to propose and demonstrate a novel digital engineering mixed reality paradigm which has the potential to facilitate the rapid capture of implicit inspection knowledge and explicitly represent this in a formalized way. An outline and the results of the development of an early stage prototype - which will form the foundation of a more complex system to address the aforementioned technological challenges identified in the literature survey - will be given
    corecore