882 research outputs found

    A Semi-Automated System for Accurate Gaze Coding in Natural Dyadic Interactions

    Get PDF
    In this paper we propose a system capable of accurately coding gazing events in natural dyadic interactions. Contrary to previous works, our approach exploits the actual continuous gaze direction of a participant by leveraging on remote RGB-D sensors and a head pose-independent gaze estimation method. Our contributions are: i) we propose a systemsetup built from low-cost sensors and a technique to easily calibrate these sensors in a room with minimal assumptions; ii) we propose a method which, provided short manual annotations, can automatically detect gazing events in the rest of the sequence; iii) we demonstrate on substantially long, natural dyadic data that high accuracy can be obtained, showing the potential of our system. Our approach is non-invasive and does not require collaboration from the interactors. These characteristics are highly valuable in psychology and sociology research

    3D Gaze Tracking and Automatic Gaze Coding from RGB-D Cameras

    Get PDF
    Gaze is recognised as one of the most important cues for the analysis of the cognitive behaviors of a person such as the attention displayed towards objects or people, their interactions, functionality and causality patterns. In this short paper, we present our investigations towards the development of 3D gaze sensing solutions from consumer RGB-D sensors, including their use for the inference of visual attention in natural dyadic interactions and the resources we have made or will make available to the community

    Deciphering the Silent Participant. On the Use of Audio-Visual Cues for the Classification of Listener Categories in Group Discussions

    Get PDF
    Estimating a silent participant’s degree of engagement and his role within a group discussion can be challenging, as there are no speech related cues available at the given time. Having this information available, however, can provide important insights into the dynamics of the group as a whole. In this paper, we study the classification of listeners into several categories (attentive listener, side participant and bystander). We devised a thin-sliced perception test where subjects were asked to assess listener roles and engagement levels in 15-second video-clips taken from a corpus of group interviews. Results show that humans are usually able to assess silent participant roles. Using the annotation to identify from a set of multimodal low-level features, such as past speaking activity, backchannels (both visual and verbal), as well as gaze patterns, we could identify the features which are able to distinguish between different listener categories. Moreover, the results show that many of the audio- visual effects observed on listeners in dyadic interactions, also hold for multi-party interactions. A preliminary classifier achieves an accuracy of 64%

    Novel methodology to examine cognitive and experiential factors in language development: combining eye-tracking and LENA technology

    Get PDF
    Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development

    3D Gaze Estimation from Remote RGB-D Sensors

    Get PDF
    The development of systems able to retrieve and characterise the state of humans is important for many applications and fields of study. In particular, as a display of attention and interest, gaze is a fundamental cue in understanding people activities, behaviors, intentions, state of mind and personality. Moreover, gaze plays a major role in the communication process, like for showing attention to the speaker, indicating who is addressed or averting gaze to keep the floor. Therefore, many applications within the fields of human-human, human-robot and human-computer interaction could benefit from gaze sensing. However, despite significant advances during more than three decades of research, current gaze estimation technologies can not address the conditions often required within these fields, such as remote sensing, unconstrained user movements and minimum user calibration. Furthermore, to reduce cost, it is preferable to rely on consumer sensors, but this usually leads to low resolution and low contrast images that current techniques can hardly cope with. In this thesis we investigate the problem of automatic gaze estimation under head pose variations, low resolution sensing and different levels of user calibration, including the uncalibrated case. We propose to build a non-intrusive gaze estimation system based on remote consumer RGB-D sensors. In this context, we propose algorithmic solutions which overcome many of the limitations of previous systems. We thus address the main aspects of this problem: 3D head pose tracking, 3D gaze estimation, and gaze based application modeling. First, we develop an accurate model-based 3D head pose tracking system which adapts to the participant without requiring explicit actions. Second, to achieve a head pose invariant gaze estimation, we propose a method to correct the eye image appearance variations due to head pose. We then investigate on two different methodologies to infer the 3D gaze direction. The first one builds upon machine learning regression techniques. In this context, we propose strategies to improve their generalization, in particular, to handle different people. The second methodology is a new paradigm we propose and call geometric generative gaze estimation. This novel approach combines the benefits of geometric eye modeling (normally restricted to high resolution images due to the difficulty of feature extraction) with a stochastic segmentation process (adapted to low-resolution) within a Bayesian model allowing the decoupling of user specific geometry and session specific appearance parameters, along with the introduction of priors, which are appropriate for adaptation relying on small amounts of data. The aforementioned gaze estimation methods are validated through extensive experiments in a comprehensive database which we collected and made publicly available. Finally, we study the problem of automatic gaze coding in natural dyadic and group human interactions. The system builds upon the thesis contributions to handle unconstrained head movements and the lack of user calibration. It further exploits the 3D tracking of participants and their gaze to conduct a 3D geometric analysis within a multi-camera setup. Experiments on real and natural interactions demonstrate the system is highly accuracy. Overall, the methods developed in this dissertation are suitable for many applications, involving large diversity in terms of setup configuration, user calibration and mobility

    Measuring and modeling the perception of natural and unconstrained gaze in humans and machines

    Get PDF
    Humans are remarkably adept at interpreting the gaze direction of other individuals in their surroundings. This skill is at the core of the ability to engage in joint visual attention, which is essential for establishing social interactions. How accurate are humans in determining the gaze direction of others in lifelike scenes, when they can move their heads and eyes freely, and what are the sources of information for the underlying perceptual processes? These questions pose a challenge from both empirical and computational perspectives, due to the complexity of the visual input in real-life situations. Here we measure empirically human accuracy in perceiving the gaze direction of others in lifelike scenes, and study computationally the sources of information and representations underlying this cognitive capacity. We show that humans perform better in face-to-face conditions compared with recorded conditions, and that this advantage is not due to the availability of input dynamics. We further show that humans are still performing well when only the eyes-region is visible, rather than the whole face. We develop a computational model, which replicates the pattern of human performance, including the finding that the eyes-region contains on its own, the required information for estimating both head orientation and direction of gaze. Consistent with neurophysiological findings on task-specific face regions in the brain, the learned computational representations reproduce perceptual effects such as the Wollaston illusion, when trained to estimate direction of gaze, but not when trained to recognize objects or faces.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF – 1231216

    Sensing, interpreting, and anticipating human social behaviour in the real world

    Get PDF
    Low-level nonverbal social signals like glances, utterances, facial expressions and body language are central to human communicative situations and have been shown to be connected to important high-level constructs, such as emotions, turn-taking, rapport, or leadership. A prerequisite for the creation of social machines that are able to support humans in e.g. education, psychotherapy, or human resources is the ability to automatically sense, interpret, and anticipate human nonverbal behaviour. While promising results have been shown in controlled settings, automatically analysing unconstrained situations, e.g. in daily-life settings, remains challenging. Furthermore, anticipation of nonverbal behaviour in social situations is still largely unexplored. The goal of this thesis is to move closer to the vision of social machines in the real world. It makes fundamental contributions along the three dimensions of sensing, interpreting and anticipating nonverbal behaviour in social interactions. First, robust recognition of low-level nonverbal behaviour lays the groundwork for all further analysis steps. Advancing human visual behaviour sensing is especially relevant as the current state of the art is still not satisfactory in many daily-life situations. While many social interactions take place in groups, current methods for unsupervised eye contact detection can only handle dyadic interactions. We propose a novel unsupervised method for multi-person eye contact detection by exploiting the connection between gaze and speaking turns. Furthermore, we make use of mobile device engagement to address the problem of calibration drift that occurs in daily-life usage of mobile eye trackers. Second, we improve the interpretation of social signals in terms of higher level social behaviours. In particular, we propose the first dataset and method for emotion recognition from bodily expressions of freely moving, unaugmented dyads. Furthermore, we are the first to study low rapport detection in group interactions, as well as investigating a cross-dataset evaluation setting for the emergent leadership detection task. Third, human visual behaviour is special because it functions as a social signal and also determines what a person is seeing at a given moment in time. Being able to anticipate human gaze opens up the possibility for machines to more seamlessly share attention with humans, or to intervene in a timely manner if humans are about to overlook important aspects of the environment. We are the first to propose methods for the anticipation of eye contact in dyadic conversations, as well as in the context of mobile device interactions during daily life, thereby paving the way for interfaces that are able to proactively intervene and support interacting humans.Blick, Gesichtsausdrücke, Körpersprache, oder Prosodie spielen als nonverbale Signale eine zentrale Rolle in menschlicher Kommunikation. Sie wurden durch vielzählige Studien mit wichtigen Konzepten wie Emotionen, Sprecherwechsel, Führung, oder der Qualität des Verhältnisses zwischen zwei Personen in Verbindung gebracht. Damit Menschen effektiv während ihres täglichen sozialen Lebens von Maschinen unterstützt werden können, sind automatische Methoden zur Erkennung, Interpretation, und Antizipation von nonverbalem Verhalten notwendig. Obwohl die bisherige Forschung in kontrollierten Studien zu ermutigenden Ergebnissen gekommen ist, bleibt die automatische Analyse nonverbalen Verhaltens in weniger kontrollierten Situationen eine Herausforderung. Darüber hinaus existieren kaum Untersuchungen zur Antizipation von nonverbalem Verhalten in sozialen Situationen. Das Ziel dieser Arbeit ist, die Vision vom automatischen Verstehen sozialer Situationen ein Stück weit mehr Realität werden zu lassen. Diese Arbeit liefert wichtige Beiträge zur autmatischen Erkennung menschlichen Blickverhaltens in alltäglichen Situationen. Obwohl viele soziale Interaktionen in Gruppen stattfinden, existieren unüberwachte Methoden zur Augenkontakterkennung bisher lediglich für dyadische Interaktionen. Wir stellen einen neuen Ansatz zur Augenkontakterkennung in Gruppen vor, welcher ohne manuelle Annotationen auskommt, indem er sich den statistischen Zusammenhang zwischen Blick- und Sprechverhalten zu Nutze macht. Tägliche Aktivitäten sind eine Herausforderung für Geräte zur mobile Augenbewegungsmessung, da Verschiebungen dieser Geräte zur Verschlechterung ihrer Kalibrierung führen können. In dieser Arbeit verwenden wir Nutzerverhalten an mobilen Endgeräten, um den Effekt solcher Verschiebungen zu korrigieren. Neben der Erkennung verbessert diese Arbeit auch die Interpretation sozialer Signale. Wir veröffentlichen den ersten Datensatz sowie die erste Methode zur Emotionserkennung in dyadischen Interaktionen ohne den Einsatz spezialisierter Ausrüstung. Außerdem stellen wir die erste Studie zur automatischen Erkennung mangelnder Verbundenheit in Gruppeninteraktionen vor, und führen die erste datensatzübergreifende Evaluierung zur Detektion von sich entwickelndem Führungsverhalten durch. Zum Abschluss der Arbeit präsentieren wir die ersten Ansätze zur Antizipation von Blickverhalten in sozialen Interaktionen. Blickverhalten hat die besondere Eigenschaft, dass es sowohl als soziales Signal als auch der Ausrichtung der visuellen Wahrnehmung dient. Somit eröffnet die Fähigkeit zur Antizipation von Blickverhalten Maschinen die Möglichkeit, sich sowohl nahtloser in soziale Interaktionen einzufügen, als auch Menschen zu warnen, wenn diese Gefahr laufen wichtige Aspekte der Umgebung zu übersehen. Wir präsentieren Methoden zur Antizipation von Blickverhalten im Kontext der Interaktion mit mobilen Endgeräten während täglicher Aktivitäten, als auch während dyadischer Interaktionen mittels Videotelefonie

    Bridging the gap between emotion and joint action

    Get PDF
    Our daily human life is filled with a myriad of joint action moments, be it children playing, adults working together (i.e., team sports), or strangers navigating through a crowd. Joint action brings individuals (and embodiment of their emotions) together, in space and in time. Yet little is known about how individual emotions propagate through embodied presence in a group, and how joint action changes individual emotion. In fact, the multi-agent component is largely missing from neuroscience-based approaches to emotion, and reversely joint action research has not found a way yet to include emotion as one of the key parameters to model socio-motor interaction. In this review, we first identify the gap and then stockpile evidence showing strong entanglement between emotion and acting together from various branches of sciences. We propose an integrative approach to bridge the gap, highlight five research avenues to do so in behavioral neuroscience and digital sciences, and address some of the key challenges in the area faced by modern societies
    • …
    corecore